CS257: Introduction to Automated Reasoning First-Order Theories

Outline

- First-order Theory
- Satisfiability modulo Theories
- Examples of First-order Theories

After-class readings:

- CC: Chapter 3
- (Optional) Barrett, Clark, and Cesare Tinelli. "Satisfiability modulo theories." Handbook of model checking. Springer, Cham, 2018. 305-343.

* Some of the slides today are contributed by Clark Barrett.

Motivations

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of set theory presented last time:

 $\Sigma^{S} = \{E, S\}$ $\Sigma^{F} = \{\emptyset, \epsilon\}$ $sort(\emptyset) = S$ $sort(\epsilon) = \langle E, S, Bool \rangle$

Variable v_e has sort E and variable v_s has sort S

Consider the Σ -formula $\forall v_e. \neg (v_e \in \emptyset)$. Is the formula valid? Now consider the formula $\forall v_e. (v_e \in \emptyset)$. Is the formula satisfiable? In practice, we often only care about satisfiability and validity with respect to a limited class of interpretations.

First-order theories

A theory \mathcal{T} is a pair (Σ, \mathcal{S}) , where:

- Σ is a signature, which we recall from Lecture 4 consists of a set Σ^{S} of sorts and a set Σ^{F} of function symbols.
- S is a class (in the sense of set theory) of Σ -structures.

A theory limits interpretations of Σ -formulas to with the structures in S.

Example: the Theory of Real Arithmetics: T_{RA}

 $\Sigma RA^{S} = \{R\}, \Sigma RA^{F} = \{+, -, *, \leq, =_{R}, q_{i} \text{ for each rational number constant } i\}$

 ${\cal S}$ is the class of structures that interprets R as the set of real numbers, and the function symbols in the usual way.

\mathcal{T} -interpretations

Given two signatures Σ and Ω , and two set of variables X and Y, where $\Sigma \subseteq \Omega$ (i.e., $\Sigma^S \subseteq \Omega^S$ and $\Sigma^F \subseteq \Omega^F$) and $X \subseteq Y$

Let \mathcal{I} be an Ω -interpretation over Y. A reduct of \mathcal{I} to (Σ, X) , denoted $\mathcal{I}^{\Sigma, X}$, is a Σ -interpretation over X obtained from \mathcal{I} by restricting it to interpret only the symbols in Σ and the variables in X

Given a theory $\mathcal{T} := (\Sigma, S)$, a \mathcal{T} -interpretation is any Ω -interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $I^{\Sigma, \emptyset} \in S$

Example: Consider again \mathcal{T}_{RA} , where $\sum_{RA}^{S} = \{R\}$, $\sum_{RA}^{F} = \{+, -, *, \leq, =_{R}, q_i\}$, \mathcal{S} : $dom(R) = \mathbb{R}$, function symbols interpreted in the usual way. Suppose we have a set of variables v_0, v_1, \ldots

Are the following interpretations \mathcal{T}_{RA} -interpretations?

- dom(R) is the rational numbers, functions in \sum_{RA}^{F} interpreted in the usual way
- $dom(R) = \mathbb{R}$, functions in \sum_{RA}^{F} interpreted in the usual way, and $v_i^{\mathcal{I}} = 0$
- $dom(R) = \mathbb{R}$, functions in \sum_{RA}^{F} interpreted in the usual way, $\emptyset^{\mathcal{I}} = \{\}$, and $v_{i}^{\mathcal{I}} = 0$

Note: This definition allow us to consider the satisfiability in a theory $\mathcal{T} := (\Sigma, S)$ of formulas that contain sorts or function symbols not in Σ . These symbols are uninterpreted. October 23, 2023 CS257 4 / 14

T-satisfiability, **T**-validity

Given a theory $\mathcal{T} := (\Sigma, S)$, a formula α is satisfiable modulo \mathcal{T} , or \mathcal{T} -satisfiable, if it is satisfied by some \mathcal{T} -interpretation \mathcal{I} .

A set Γ of Σ -formulas \mathcal{T} -entails an Σ -formula α , written $\Gamma \models_{\mathcal{T}} \alpha$, iff every \mathcal{T} -interpretation that satisfies all formulas in Γ satisfies α as well.

An Σ -formula ϕ is \mathcal{T} -valid, written $\models_{\mathcal{T}} \phi$, iff $\emptyset \models_{\mathcal{T}} \phi$.

Example: Are the following Σ_{RA} -formulas \mathcal{T} -valid/ \mathcal{T} -satisfiable?

- $((v_0 + v_1 \le 1) \land (v_0 v_1 \le 2))$
- $\forall v_0.((v_0 + v_1 \le 1) \lor (-v_0 v_1 \le -1))$
- $\forall v_0, \forall v_1.((v_0 + v_1 \le 1) \land (-v_0 \le -1) \land (-v_1 \le -1))$

Exercise

Given a theory $\mathcal{T} := (\Sigma, S)$, a formula α is satisfiable modulo \mathcal{T} , or \mathcal{T} -satisfiable, if it is satisfied by some \mathcal{T} -interpretation \mathcal{I} . A set Γ of Σ -formulas \mathcal{T} -entails an Σ -formula α , written $\Gamma \models_{\mathcal{T}} \alpha$, iff every \mathcal{T} -interpretation that satisfies all formulas in Γ satisfies α as well. An Σ -formula ϕ is \mathcal{T} -valid, written $\models_{\mathcal{T}} \phi$, iff $\emptyset \models_{\mathcal{T}} \phi$.

Are the following statements true?

- Is a \mathcal{T} -valid formula always \mathcal{T} -satisfiable?
- Is a valid Σ -formula always \mathcal{T} -valid?
- Is a \mathcal{T} -valid formula always valid?

Submit your answers to

https://pollev.com/andreww095

Exercise: alternative definition of theory

In Chapter 3 of CC, a theory is defined by a signature Σ and a set of Σ -sentences A called **axioms**. We refer to this definition as **theory**^{*}.

In particular, a formula α is \mathcal{T} -valid* iff every interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α .

Theory* is a special case in our earlier definition of theory:

- given a theory* *T*^{*} defined by Σ and *A*, we define a theory *T* := (*T*, *S*), where *S* is the class of structures that satisfies *A*.
- By definition, a formula α is \mathcal{T} -valid* iff it is \mathcal{T} -valid.

However, \mathcal{T}^* is not general enough, because not every class of Σ -models can be characterized by a set of axioms (e.g., integer arithmetic).

Completeness of theories

A theory \mathcal{T} is **complete** iff for every sentence α , either α or $\neg \alpha$ is \mathcal{T} -valid. Examples:

- for theory $\mathcal{T} =: (\Sigma, S)$ where S has only one element, \mathcal{T} is complete. Why?
- the theory of field, *Tf* := (Σf, S_f), is not complete. In this case, S_f contains all structures that satisfies the basic axioms of fields. In particlar the following sentence is true in some field but false in others:

1 + 1 = 0

Decidability

Given a set of Σ -formulas Γ , we say Γ is a **decidable** set of formulas, if there exists a terminating algorithm, which given a Σ -formula α , returns "yes" if $\alpha \in \Gamma$ and "no" otherwise.

Given a theory $\mathcal{T} \coloneqq \langle \Sigma, S \rangle$, let Γ be the set of \mathcal{T} -valid Σ -formulas. We say \mathcal{T} is **decidable** if Γ is a decidable set.

A fragment of a theory \mathcal{T} is a syntactically-restricted subset of formulas in \mathcal{T} .

The **quantifier-free** fragment of \mathcal{T} are \mathcal{T} -valid formulas without quantifiers.

Theory of Uninterpreted Functions: T_{EUF}

Given a signature Σ with equalities, the most unrestricted theory would include the class of all Σ -models.

This family of theories parameterized by the signature, is known as the theory of **Equality with Uninterpreted Functions (EUF)** or the **empty theory**, since it imposes no restrictions on its models.

Satisfiability modulo \mathcal{T}_{EUF} is undecidable.

However, satisfiability of conjunctions of \mathcal{T}_{EUF} -literals (i.e., an atomic formula or its negation) is decidable in polynomial time with the congruence closure algorithm (covered later).

Example: $f(a) = a \wedge g(a) \neq g(f(a))$

Theory of Real Arithmetics: T_{RA}

 $\Sigma^{S} = \{\mathsf{R}\}$

Equality: Yes

 $\Sigma^F = \{+, -, *, \leq, q_i \text{ for each rational number constant } i\}$

S is the class of structures that interprets R as the set of real numbers, and the functions in the usual way ($sort(q_i) = \langle R \rangle$).

Satisfiability modulo \mathcal{T}_{RA} is decidable (worst-case doubly-exponential)

But, restricted classes of Σ -formulas can be efficiently decided:

Quantifier-free linear real arithmetic (LRA): * can only appear if at least one of the two operands is a rational constant.

Theory of Integer Arithmetics: T_{IA}

Equality: Yes

 $\Sigma^{S} = \{Z\}$

 $\Sigma^{F} = \{+, -, *, \leq, c_{i} \text{ for each integer number constant } i\}$

 ${\cal S}$ is the class of structures that interprets Z as the set of integers numbers, and the functions in the usual way.

Satisfiability modulo \mathcal{T}_{IA} is undecidable.

Satisfiability of quantifier-free Σ -formulas modulo \mathcal{T}_{IA} is undecidable.

Linear integer arithmetic (LIA) (i.e., Presburger arithmetic) is decidable.

Theory of Array with Extensionality: \mathcal{T}_{A} $\Sigma^{S} = \{A, I, E\}$ (for array, indices, elements) Equality: Yes $\Sigma^F = \{\text{read}, \text{write}\}$, where sort(read) = $\langle A, I, E \rangle$ and sort(write) = $\langle A, I, E, A \rangle$ Useful for modelling memories or array data structures. Let a, i, and v be variables of sort A, I, E, respectively. Example 1: read(write(a, i, v), i) = v

"The value stored at position *i* of an array *a* to which we write *v* to position *i* is *v*" Intuitively, is this formula valid/satisfiable/unsatisfiable modulo \mathcal{T}_A ?

Example 2: $(read(a, i) = read(a', i)) \rightarrow (a = a')$

Intuitively, is this formula valid/satisfiable/unsatisfiable modulo T_A ?

Theory of Array with Extensionality: T_A

 ${\cal S}$ is the class of structures that satisfy the following axioms:

- 1. $\forall a. \forall i, \forall v, \text{read}(\text{write}(a, i, v), i) = v$
- 2. $\forall a. \forall i. \forall i'. \forall v. (i \neq i' \rightarrow \text{read}(\text{write}(a, i, v), i') = \text{read}(a, i'))$
- 3. $\forall a. \forall a'. ((\forall i. \operatorname{read}(a, i) = \operatorname{read}(a', i)) \rightarrow a = a')$

Note: 3 can be omitted to obtain a theory without extensionality. Satisfiability modulo T_A is undecidable.

But there are several decidable fragments (next lecture).