CS257: Introduction to Automated Reasoning

First-order logic: Syntax

Motivation

Consider reasoning about the following sentences in propositional logic.

English	prop. logic
Every natural number is larger than 0	K
Not every natural number is larger than 0	$\neg K$

What facts can we logically deduce?
Propositional logic is sometimes too crude to mirror intuitively correct deductions.
First-order logic allows us to (dis)prove the validity of sentences like the above.
In this case, we need a first-order language for number theory.

Motivation

"Every natural number is larger than 0. ."
Intuitively, this first-order language needs to have the following features:

English	Formal language	
The number 0	$\mathbf{0}$	Constant
" v_{1} is greater than $v_{2} "$	$>\mathbf{v}_{1} \mathbf{v}_{2}$	Function/predicate
"For every natural number"	\forall	Quantifier

Motivation

"Every natural number is larger than 0. ."
Intuitively, this first-order language needs to have the following features:

English	Formal language
The number 0	$\mathbf{0}$
" v_{1} is greater than $\mathbf{v}_{2} "$	$>\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}}$
"For every natural number"	\forall

"Every natural number is larger than 0 ." translates to $\forall v_{1}>v_{1} 0$
This sentence is false in the intended translation.

Plan for this week

- Syntax (MI 2.1)
- Semantics (MI 2.2)
- Proof rules for first-order logic (CC 2.3)
- Clausal Form (CC 2.5)

MI presents an single-typed first-order logic.
We will present a many-sorted first-order logic (FOL).
This makes it convenient to present Satisfiability modulo Theories (starting Week 4).
Many-sorted FOL is not more expressive than single-sorted FOL. See MI 4.3 for reducing many-sorted logic to a single sorted one.

[^0]
Symbols

Review: what does the syntax of a logic consist of?
First-order logic is an umbrella term for different first-order languages. The symbols of a first-order language consist of:

1. Logical symbols

- Parentheses: (,)
- Propositional connectives: \rightarrow, \neg
- Variables: v_{1}, v_{2}, \ldots
- Quantifier: \forall

2. Signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:
$-\Sigma^{S}$ is a set of sorts: e.g., Real, Int, Set, \mathcal{D}, \odot

- Σ^{F} is a set of function symbols: e.g., $+,{ }_{[2]},<, \ell$
- For each sort σ in Σ^{S}, there may be an optional equality symbol $=\sigma$ in Σ^{F}

Note 1: we require that no symbol is a finite sequence of others.
Note 2: we have infinitely many distinct symbols.

Abbreviations

- Propositional connectives: $\vee, \wedge, \leftrightarrow$
- Existential quantifier: express $\exists v$ with $\neg \forall v \neg$

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set, D, ©
- Σ^{F} is a set of function symbols: e.g., $+,{ }_{[2]},<, \ell$

We associate each variable symbol v with a sort in Σ^{S}, denoted $\operatorname{sort}(v)$.
We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- an $(n+1)$-tuple of sorts: $\operatorname{sort}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

We say f returns σ_{n+1}.
Example: In the first-order language of number theory

- Σ^{S} contains a sort Nat
- For each variable v, $\operatorname{sort}(v)=\mathrm{Nat}$
- Σ^{F} contains a function +
- + has arity 2 and $\operatorname{sort}(+)=\langle$ Nat, Nat, Nat \rangle

Signature

We assume Σ^{S} implicitly includes a distinguished sort Bool
We assume Σ^{F} implicitly contains distinguished symbols $\{T, \perp\}$ and $\operatorname{sort}(\perp)=\operatorname{sort}(T)=\langle$ Bool \rangle
There are two special kinds of function symbols:

- Constant symbol: a function symbol with 0 arity (e.g., \perp, T, π, John, 0)
- Predicate symbol: a function symbol that returns Bool
- Each equality symbol $=_{\sigma}$ is a predicate symbol with $\operatorname{sort}\left(=_{\sigma}\right)=\langle\sigma, \sigma$, Bool \rangle
- $\operatorname{sort}(<)=\langle$ Nat, Nat, Bool \rangle

First-Order Languages: Examples

A first-order language is defined w.r.t. a signature $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$. To specify a signature:

1. say what are the sorts;
2. say whether the equality symbol is present for each sort;
3. say what are the other function symbols.

Set Theory

- $\Sigma^{S}:\{$ Set, Bool $\}$
- Equality: yes for Set
- $\Sigma^{F}:\left\{\epsilon, \varnothing,=s_{e t}\right\}$
where:
- $\operatorname{sort}(\epsilon)=\langle$ Set, Set, Bool \rangle
- $\operatorname{sort}(\varnothing)=\langle$ Set \rangle

First-Order Languages: Examples

A first-order language is defined w.r.t. a signature $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$. To specify a signature:

1. say what are the sorts;
2. say whether the equality symbol is present for each sort;
3. say what are the other function symbols.

Elementary Number Theory

- $\Sigma^{S}:\{$ Nat, Bool $\}$
- Equality: yes for Nat
- $\Sigma^{F}:\left\{<, 0, S,+, \times,={ }_{\text {Nat }}\right\}$
where:
- $\operatorname{sort}(<)=\langle$ Nat, Nat, Bool \rangle
- $\operatorname{sort}(0)=\langle$ Nat \rangle
- $\operatorname{sort}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{sort}(+/ \times)=\langle$ Nat, Nat, Nat \rangle

Expressions

Recall from Lecture 1, an expression is any finite sequence of symbols.
For example:

- $\forall v_{1}\left(\left(<0 v_{1}\right) \rightarrow\left(\neg \forall v_{2}(<v 1 v 2)\right)\right)$
- $\left.\left.v_{1}<\forall v_{2}\right)\right)$

Most expressions are nonsensical.
Expressions of interest in first-order logic are the terms and the well-formed formulas (wffs).

Terms

Terms are building blocks of wffs in a first-order language.
Concretely, terms are expressions that can be built up from the constant symbols and the variables by prefixing the function symbols.
Formally, let \mathcal{B} be the set of all variables and the constant symbols.
For each non-constant function symbol $f \in \Sigma^{F}$ (i.e., with arity $n>0$), we define a term-building operation \mathcal{F}_{f} :

$$
\mathcal{F}_{f}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f \alpha_{1}, \ldots, \alpha_{n}
$$

Denote this set of operations \mathcal{F}.
Terms are expressions that are generated by \mathcal{F} from \mathcal{B}.
Examples of terms in the language of number theory:

- $+\mathrm{v}_{2} \mathrm{SO}$
- SSSSO
- $S<00$ We do not want terms like $S<00$, because S takes as argument terms with sort Nat but <00 has sort Bool.

Well-sorted terms

We formulate the notion of well-sortedness.
We define $\overline{s o r t}$, a function from terms to sorts as follows:

- If v is a variable, then $\overline{\operatorname{sort}}(v)=\operatorname{sort}(v)$.
- If f is a constant, where $\operatorname{sort}(f)=\langle\sigma\rangle$, then $\overline{\operatorname{sort}}(f)=\sigma$.
- If $t=f t_{1} \ldots t_{n}$, where $\operatorname{sort}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$, then $\overline{\operatorname{sort}}(t)=\sigma_{n+1}$.

We define a function well from terms to $\{1,0\}$.

- For every variable v, well $(v)=1$.
- For every constant f, well(f) $=1$.
- If $t=f t_{1} \ldots t_{n}$, where $\operatorname{sort}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$, well $(t)=1$ iff

A term t is well-sorted if well $(t)=1$.

Well-sorted terms: example

Elementary Number Theory

Let $\Sigma^{S}=\{$ Nat, Bool $\}$ and $\Sigma^{F}=\left\{0, S,+, \times,<,==_{\mathrm{Nat}}\right\}$.
Suppose we have variables v_{i} where $\operatorname{sort}\left(v_{i}\right)=$ Nat for all v_{i}. Define sort as follows:

- $\operatorname{sort}(0)=\langle\mathrm{Nat}\rangle$
- $\operatorname{sort}(S)=\langle\mathrm{Nat}, \mathrm{Nat}\rangle$
- $\operatorname{sort}(+/ \times)=\langle\mathrm{Nat}$, Nat, Nat \rangle
- $\operatorname{sort}(</=$ Nat $)=$ (Nat, Nat, Bool \rangle

Are the following well-sorted?

- $+0 v_{5}$
- $++0 v_{5}$
- $S+0 v_{5}$
- = ${ }_{\text {Nat }} S v_{3}+1 v_{1}$

Note: we are using prefix notation. In practice, there are first-order languages for which it is more standard to use infix notation.

\sum-Formulas

An atomic formula is a well-sorted term t with $\overline{\operatorname{sort}}(t)=$ Bool.

Example: = Nat 0 S0

We define the following formula-building operations, denoted \mathcal{F} :

- $\mathcal{E}_{\neg}(\alpha)=(\neg \alpha)$
- $\mathcal{E}_{\rightarrow}(\alpha, \beta)=(\alpha \rightarrow \beta)$
- For each variable $v, \mathcal{Q}_{v}(\alpha)=\forall v \alpha$

Given a signature Σ, the set of well-formed formulas (also called Σ-formulas) is the set of expressions generated from the atomic formulas by \mathcal{F}.
Let $\Sigma_{N}=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<,==_{N a t}\right\}\right\rangle$. Are the following Σ_{N}-formulas?

$$
\begin{array}{ll}
=N_{a t}+v_{1} 0 v_{2} & \text { yes } \\
+0 v_{1} & \text { no } \\
\forall v_{1}=N_{\text {at }}+0 v_{1} v_{1} & \text { yes }
\end{array}
$$

\sum-Formulas

An atomic formula is a well-sorted term t with $\overline{\operatorname{sort}}(t)=$ Bool.
We define the following formula-building operations, denoted \mathcal{F} :

- $\mathcal{E}_{\neg}(\alpha)=(\neg \alpha)$
- $\mathcal{E}_{\rightarrow}(\alpha, \beta)=(\alpha \rightarrow \beta)$
- For each variable $v, \mathcal{Q}_{v}(\alpha)=\forall v \alpha$

Given a signature Σ, the set of well-formed formulas (also called Σ-formulas) is the set of expressions generated from the atomic formulas by \mathcal{F}.

Exercise: draw a Venn Diagram that illustrates the relations between A : terms, B : well-sorted terms, C : atomic formulas, D : well-formed formulas, and E : expressions.

Describe the relations between B, C, and D, and submit your answer to
https://pollev.com/andreww095

Free and Bound Variables

We define a recursive function free from Σ-formulas and variables to $\{1,0\}$ to capture what it means for a variable x to occur free in a wff α :

- When α is an atomic formula, then free $(\alpha, x)=1$ iff x occurs in α;
- When $\alpha:=(\neg \beta)$, then free $(\alpha, x)=$ free (β, x);
- When $\alpha:=(\beta \rightarrow \gamma)$, then $\operatorname{free}(\alpha, x)=\max (\operatorname{free}(\beta, x), \operatorname{free}(\gamma, x))$;
- When $\alpha:=\forall v \beta$, then $\operatorname{free}(\alpha, x)=\operatorname{free}(\beta, x)$ if $x \neq v$, and 0 otherwise.

If $\forall v$ appears in α, then v is said to be bound in α.
Can a variable both occur free and be bound in α ?
This can be confusing, so we typically require the set of free and bound variables to be disjoint.
We say a Σ-formula α is closed or α is a sentence, if no variable occurs free in α.

Induction and recursion

- To define a set C inductively:

1. Define a universe U. (e.g., set of expressions)
2. Define a base set $\mathcal{B} \subseteq U$. (e.g., set of atomic formulas)
3. Define a family of building operators, \mathcal{F}, each of which takes one or more element of U as arguments and returns an element of U. (e.g., One for each of $\neg, \rightarrow, \forall$)
\mathcal{C} is defined to be the set generated from \mathcal{B} by \mathcal{F} (e.g., wffs).

- To define a function h on C recursively:

1. Define $h(b)$ for each $b \in \mathcal{B}$. (e.g., define free on atomic formulas)
2. For each $f \in F$, define the value of $h\left(f\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)$ in terms of $h\left(\alpha_{1}\right), \ldots, h\left(\alpha_{k}\right)$. (e.g., define free on $(\neg \beta)$ in terms of free (β))

In general, is h always well-defined? No!

Induction and Recursion: Pitfalls

Consider the following inductive definition:

- Universe U : the set of real numbers
- Base set $\mathcal{B}:\{0\}$
- Building operators $\mathcal{F}: f(x, y)=x \cdot y$ and $g(x)=x+1$

Now define h recursively as:

- $h(0)=0$
- $h(f(x, y))=h(x)+h(y)$
- $h(g(x))=h(x)+2$

Is h well-defined? Try computing $h(1)$?
$h(1)=h(g(0))=h(0)+2=2$
$h(1)=h(f(g(0), g(0)))=h(g(0))+h(g(0))=2+2=4 \quad$ Why does this happen?

Induction and Recursion

We say C is freely generated from \mathcal{B} by \mathcal{F} iff C is generated by \mathcal{B}, and in addition:

- The range of each $f \in \mathcal{F}$ is disjoint from the ranges of all other functions in \mathcal{F} and from \mathcal{B}
- each $f \in \mathcal{F}$ is one-to-one

The Recursion Theorem: Let \mathcal{C} be the set freely generated from \mathcal{B} by \mathcal{F}. Assume \mathcal{V} is a set, $h_{0}: \mathcal{B} \mapsto \mathcal{V}$ is a function, and $h_{f}: \mathcal{V}^{k} \mapsto \mathcal{V}$ for each $f \in \mathcal{F}$ with arity $k>0$.

Then there exists a unique function $h: C \mapsto V$, such that:

- $h(b)=h_{0}(b)$ for each $b \in \mathcal{B}$;
- for each $f \in \mathcal{F}, h\left(f\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)=h_{f}\left(h\left(\alpha_{1}\right), \ldots, h\left(\alpha_{k}\right)\right)$

To show a recursive function h on an inductive set C is well-defined, it suffices to show that C is freely generated.

Induction and Recursion: Unique Readability Theorem

Theorem: the set of terms is freely generated from the set of variables and constant symbols by the term-building operations.

Proof: First, given $f, g \in F$, where $f \neq g$, the range of f is clearly disjoint from the range of g, because they result in terms with different prefixes. Further, f 's range is also disjoint from the set of variables and constant symbols.

It remains to show that f is one-to-one. That is, suppose f has arity n, for any terms $t_{1}, \ldots, t_{n}, t_{1}^{\prime}, \ldots, t_{n}^{\prime}$, if $f t_{1} \ldots t_{n}=f t_{1}^{\prime} \ldots t_{n}^{\prime}$, then $t_{1}=t_{1}^{\prime}, \ldots$, and $t_{n}=t_{n}^{\prime}$.
The proof makes use of the following fact, which you will prove in the homework.
Lemma A: No proper initial segment of a term is itself a term.
By deleting the first symbol, we have $t_{1} \ldots t_{n}=t_{1}^{\prime} \ldots t_{n}^{\prime}$.
t_{1} must be equal to t_{1}^{\prime}, because otherwise, one would be a proper initial segment of the other, contradicting Lemma A . The same argument can be repeated to show $t_{2} \ldots t_{n}=t_{2}^{\prime} \ldots t_{n}^{\prime}$.

Theorem: the set of formulas is freely generated from the atomic formulas and the formula-building operations.

[^0]: * Some of the slides today are contributed by Clark Barrett.

