
CS257: Introduction to Automated Reasoning
First-order logic: Syntax



Motivation

Consider reasoning about the following sentences in propositional logic.

English prop. logic

Every natural number is larger than 0 K

Not every natural number is larger than 0 ¬K

What facts can we logically deduce?

Propositional logic is sometimes too crude to mirror intuitively correct deductions.

First-order logic allows us to (dis)prove the validity of sentences like the above.

In this case, we need a first-order language for number theory.

October 16, 2023 CS257 1 / 21



Motivation

“Every natural number is larger than 0.”

Intuitively, this first-order language needs to have the following features:

English Formal language
The number 0 0

“v1 is greater than v2” > v1v2
“For every natural number” ∀

Constant

Function/predicate

Quantifier

October 16, 2023 CS257 2 / 21



Motivation

“Every natural number is larger than 0.”

Intuitively, this first-order language needs to have the following features:

English Formal language
The number 0 0

“v1 is greater than v2” > v1v2
“For every natural number” ∀

“Every natural number is larger than 0.” translates to ∀ v1 > v10

This sentence is false in the intended translation.

October 16, 2023 CS257 3 / 21



Plan for this week

• Syntax (MI 2.1)

• Semantics (MI 2.2)

• Proof rules for first-order logic (CC 2.3)

• Clausal Form (CC 2.5)

MI presents an single-typed first-order logic.

We will present a many-sorted first-order logic (FOL).

This makes it convenient to present Satisfiability modulo Theories (starting Week 4).

Many-sorted FOL is not more expressive than single-sorted FOL.
See MI 4.3 for reducing many-sorted logic to a single sorted one.

* Some of the slides today are contributed by Clark Barrett.

October 16, 2023 CS257 4 / 21



Symbols

Review: what does the syntax of a logic consist of?

First-order logic is an umbrella term for different first-order languages. The symbols of a
first-order language consist of:

1. Logical symbols

- Parentheses: (, )
- Propositional connectives: →, ¬
- Variables: v1, v2, . . .
- Quantifier: ∀

2. Signature, Σ ∶= ⟨ΣS ,ΣF ⟩, where:

- ΣS is a set of sorts: e.g., Real, Int,Set, Á, À
- ΣF is a set of function symbols: e.g., +, +[2], <, ≬

▸ For each sort σ in ΣS , there may be an optional equality symbol =σ in ΣF

Note 1: we require that no symbol is a finite sequence of others.
Note 2: we have infinitely many distinct symbols.

October 16, 2023 CS257 5 / 21



Abbreviations

- Propositional connectives: ∨, ∧, ↔

- Existential quantifier: express ∃v with ¬∀v¬

October 16, 2023 CS257 6 / 21



Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS ,ΣF ⟩, where:
• ΣS is a set of sorts: e.g., Real, Int,Set, Á, À

• ΣF is a set of function symbols: e.g., +, +[2], <, ≬

We associate each variable symbol v with a sort in ΣS , denoted sort(v).

We associate each function symbol f ∈ ΣF with:

• an arity n: a natural number denoting the number of arguments f takes

• an (n + 1)-tuple of sorts: sort(f ) = ⟨σ1, . . . , σn, σn+1⟩
We say f returns σn+1.

Example: In the first-order language of number theory

• ΣS contains a sort Nat

• For each variable v , sort(v) = Nat
• ΣF contains a function +
• + has arity 2 and sort(+) = ⟨Nat,Nat,Nat⟩

October 16, 2023 CS257 7 / 21



Signature

We assume ΣS implicitly includes a distinguished sort Bool

We assume ΣF implicitly contains distinguished symbols {⊺,�} and sort(�) = sort(⊺) = ⟨Bool⟩

There are two special kinds of function symbols:

• Constant symbol: a function symbol with 0 arity (e.g., �, ⊺, π, John, 0)

• Predicate symbol: a function symbol that returns Bool

- Each equality symbol =σ is a predicate symbol with sort(=σ) = ⟨σ,σ,Bool⟩
- sort(<) = ⟨Nat,Nat,Bool⟩

October 16, 2023 CS257 8 / 21



First-Order Languages: Examples

A first-order language is defined w.r.t. a signature Σ ∶= ⟨ΣS ,ΣF ⟩. To specify a signature:

1. say what are the sorts;

2. say whether the equality symbol is present for each sort;

3. say what are the other function symbols.

Set Theory

• ΣS ∶ {Set,Bool}
• Equality: yes for Set

• ΣF ∶ {∈,∅,=Set}

where:

• sort(∈) = ⟨Set,Set,Bool⟩
• sort(∅) = ⟨Set⟩

October 16, 2023 CS257 9 / 21



First-Order Languages: Examples

A first-order language is defined w.r.t. a signature Σ ∶= ⟨ΣS ,ΣF ⟩. To specify a signature:

1. say what are the sorts;

2. say whether the equality symbol is present for each sort;

3. say what are the other function symbols.

Elementary Number Theory

• ΣS ∶ {Nat,Bool}
• Equality: yes for Nat

• ΣF ∶ {<,0,S ,+,×,=Nat}

where:

• sort(<) = ⟨Nat,Nat,Bool⟩
• sort(0) = ⟨Nat⟩
• sort(S) = ⟨Nat,Nat⟩
• sort(+/×) = ⟨Nat,Nat,Nat⟩

October 16, 2023 CS257 10 / 21



Expressions

Recall from Lecture 1, an expression is any finite sequence of symbols.
For example:

• ∀v1((< 0v1)→ (¬∀v2(< v1v2)))
• v1 < ∀v2))

Most expressions are nonsensical.

Expressions of interest in first-order logic are the terms and the well-formed formulas
(wffs).

October 16, 2023 CS257 11 / 21



Terms

Terms are building blocks of wffs in a first-order language.

Concretely, terms are expressions that can be built up from the constant symbols and the
variables by prefixing the function symbols.

Formally, let B be the set of all variables and the constant symbols.
For each non-constant function symbol f ∈ ΣF (i.e., with arity n > 0), we define a term-building
operation Ff :

Ff (α1, . . . , αn) = f α1, . . . , αn

Denote this set of operations F .

Terms are expressions that are generated by F from B.

Examples of terms in the language of number theory:

• +v2S0
• SSSS0

• S < 00 We do not want terms like S < 00, because S takes as argument
terms with sort Nat but < 00 has sort Bool.

October 16, 2023 CS257 12 / 21



Well-sorted terms

We formulate the notion of well-sortedness.

We define sort, a function from terms to sorts as follows:

• If v is a variable, then sort(v) = sort(v).

• If f is a constant, where sort(f ) = ⟨σ⟩, then sort(f ) = σ.

• If t = ft1 . . . tn, where sort(f ) = ⟨σ1, . . . , σn, σn+1⟩, then sort(t) = σn+1.

We define a function well from terms to {1,0}.
• For every variable v , well(v) = 1.

• For every constant f , well(f ) = 1.

• If t = ft1 . . . tn, where sort(f ) = ⟨σ1, . . . , σn, σn+1⟩, well(t) = 1 iff
(well(t1) = 1) ∧⋯ ∧ (well(tn) = 1)∧ (sort(t1) = σ1) ∧⋯ ∧ (sort(tn) = σn).

A term t is well-sorted if well(t) = 1.

October 16, 2023 CS257 13 / 21



Well-sorted terms: example

Elementary Number Theory

Let ΣS = {Nat,Bool} and ΣF = {0,S ,+,×,<,=Nat}.
Suppose we have variables vi where sort(vi) = Nat for all vi . Define sort as follows:

• sort(0) = ⟨Nat⟩
• sort(S) = ⟨Nat,Nat⟩
• sort(+/×) = ⟨Nat,Nat,Nat⟩
• sort(< / =Nat) = ⟨Nat,Nat,Bool⟩

Are the following well-sorted?

• +0v5
• + + 0v5
• S + 0v5
• =Nat S v3 + 1 v1

Note: we are using prefix notation. In practice, there are first-order languages for which it is
more standard to use infix notation.

October 16, 2023 CS257 14 / 21



Σ-Formulas

An atomic formula is a well-sorted term t with sort(t) = Bool.

Example: =Nat 0 S0

We define the following formula-building operations, denoted F :
• E¬(α) = (¬α)

• E→(α,β) = (α → β)

• For each variable v , Qv(α) = ∀ v α

Given a signature Σ, the set of well-formed formulas (also called Σ-formulas) is the set of
expressions generated from the atomic formulas by F .

Let ΣN = ⟨ΣS ∶= {Nat},ΣF ∶= {0,S ,+,×,<,=Nat}⟩. Are the following ΣN -formulas?

=Nat +v10v2 yes
+0v1 no
∀ v1 =Nat +0v1v1 yes

October 16, 2023 CS257 15 / 21



Σ-Formulas

An atomic formula is a well-sorted term t with sort(t) = Bool.

We define the following formula-building operations, denoted F :
• E¬(α) = (¬α)

• E→(α,β) = (α → β)

• For each variable v , Qv(α) = ∀ v α

Given a signature Σ, the set of well-formed formulas (also called Σ-formulas) is the set of
expressions generated from the atomic formulas by F .

Exercise: draw a Venn Diagram that illustrates the relations between A: terms, B: well-sorted
terms, C : atomic formulas, D: well-formed formulas, and E : expressions.

Describe the relations between B, C , and D, and submit your answer to

https://pollev.com/andreww095

October 16, 2023 CS257 16 / 21

https://pollev.com/andreww095


Free and Bound Variables

We define a recursive function free from Σ-formulas and variables to {1,0} to capture what it
means for a variable x to occur free in a wff α:

• When α is an atomic formula, then free(α, x) = 1 iff x occurs in α;

• When α ∶= (¬β), then free(α, x) = free(β, x);

• When α ∶= (β → γ), then free(α, x) = max(free(β, x), free(γ, x));

• When α ∶= ∀ v β, then free(α, x) = free(β, x) if x ≠ v , and 0 otherwise.

If ∀ v appears in α, then v is said to be bound in α.

Can a variable both occur free and be bound in α?

This can be confusing, so we typically require the set of free and bound variables to be disjoint.

We say a Σ-formula α is closed or α is a sentence, if no variable occurs free in α.

October 16, 2023 CS257 17 / 21



Induction and recursion

- To define a set C inductively:

1. Define a universe U. (e.g., set of expressions)

2. Define a base set B ⊆ U. (e.g., set of atomic formulas)

3. Define a family of building operators, F , each of which takes one or more element of U as
arguments and returns an element of U. (e.g., One for each of ¬, →, ∀)

C is defined to be the set generated from B by F (e.g., wffs).

- To define a function h on C recursively:

1. Define h(b) for each b ∈ B. (e.g., define free on atomic formulas)

2. For each f ∈ F , define the value of h(f (α1, . . . , αk)) in terms of h(α1), . . . ,h(αk). (e.g.,
define free on (¬β) in terms of free(β))

In general, is h always well-defined? No!

October 16, 2023 CS257 18 / 21



Induction and Recursion: Pitfalls

Consider the following inductive definition:

• Universe U: the set of real numbers

• Base set B: {0}

• Building operators F : f (x , y) = x ⋅ y and g(x) = x + 1

Now define h recursively as:

• h(0) = 0

• h(f (x , y)) = h(x) + h(y)

• h(g(x)) = h(x) + 2

Is h well-defined? Try computing h(1)?

h(1) = h(g(0)) = h(0) + 2 = 2
h(1) = h(f (g(0),g(0))) = h(g(0)) + h(g(0)) = 2 + 2 = 4 Why does this happen?

October 16, 2023 CS257 19 / 21



Induction and Recursion

We say C is freely generated from B by F iff C is generated by B, and in addition:

• The range of each f ∈ F is disjoint from the ranges of all other functions in F and from B

• each f ∈ F is one-to-one

The Recursion Theorem: Let C be the set freely generated from B by F . Assume V is a set,
h0 ∶ B ↦ V is a function, and hf ∶ Vk ↦ V for each f ∈ F with arity k > 0.

Then there exists a unique function h ∶ C ↦ V , such that:

• h(b) = h0(b) for each b ∈ B;

• for each f ∈ F , h(f (α1, . . . , αk)) = hf (h(α1), . . . ,h(αk))

To show a recursive function h on an inductive set C is well-defined, it suffices to show that C
is freely generated.

October 16, 2023 CS257 20 / 21



Induction and Recursion: Unique Readability Theorem

Theorem: the set of terms is freely generated from the set of variables and constant symbols by
the term-building operations.

Proof: First, given f ,g ∈ F , where f ≠ g , the range of f is clearly disjoint from the range of g ,
because they result in terms with different prefixes. Further, f ’s range is also disjoint from the
set of variables and constant symbols.

It remains to show that f is one-to-one. That is, suppose f has arity n, for any terms
t1, . . . , tn, t

′
1, . . . , t

′
n, if ft1 . . . tn = ft ′1 . . . t ′n, then t1 = t ′1, . . ., and tn = t ′n.

The proof makes use of the following fact, which you will prove in the homework.

Lemma A: No proper initial segment of a term is itself a term.

By deleting the first symbol, we have t1 . . . tn = t ′1 . . . t ′n.

t1 must be equal to t ′1, because otherwise, one would be a proper initial segment of the other,
contradicting Lemma A. The same argument can be repeated to show t2 . . . tn = t ′2 . . . t ′n.

Theorem: the set of formulas is freely generated from the atomic formulas and the
formula-building operations.

October 16, 2023 CS257 21 / 21


