
CS257: Introduction to Automated Reasoning
DPLL and CDCL



Plan

• DPLL

- Abstract DPLL

• CDCL (DP Chapter 2)

- Abstract CDCL
- Implication graphs

* Some of the slides today are contributed by Clark Barrett, Cesare Tinelli, and Emina Torlak.
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The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL procedure

• DPLL tries to build incrementally a satisfying truth assignment M for a CNF
formula F

• M is grown by

- deducing the truth value of a literal from M and F , or
- guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the procedure backtracks
and tries the opposite value
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DPLL as a Proof System

To facilitate a deeper look at DPLL, we present DPLL as a proof system called
Abstract DPLL.

The procedure described next is a re-elaboration of those in [1,2].

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).”,
Journal of the ACM, 53(6).

[2] Krstić and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.”, FroCos 2007.
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Abstract DPLL: A Proof System for DPLL

States:

Fail or ⟨M,∆⟩

where

• M is a sequence of literals and decision points ● denoting a partial truth assignment

• ∆ is a set of clauses denoting a CNF formula

Def. If M =M0 ●M1 ● ⋯ ●Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i]
def= M0 ● ⋯ ●Mi
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Abstract DPLL: A Proof System for DPLL

States:

Fail or ⟨M,∆⟩

Initial state:

• ⟨(),∆0⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,∆′⟩ otherwise, where
- ∆′ is equivalent to ∆0 and
- M satisfies ∆′

October 11, 2023 CS257 4 / 26



Some clause terminology

Given a partial assignment: {p1 ↦ 1,p2 ↦ 0,p4 ↦ 1}
• {p1,p3,¬p4} is satisfied
• {¬p1,p2} is conflicting
• {¬p1,p3,¬p4} is unit
• {¬p1,p3,p5} is unresolved
• p1 is assigned

• p3 is unassigned

One characteristic of DPLL-style SAT solvers is that given a partial assignment under
which a clause becomes unit, it must be extended so that it satisfies the unassigned
literal of this clause. Following this requirement is necessary but not sufficient for
satisfying the formula.
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Abstract DPLL: Proof Rules for the Original DPLL

Extending the assignment

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

Deduce the values of unassigned literals in unit clauses.
The clause {l1,⋯, ln, l} is called the antecedent clause of l . Denoted by Antecedent(l).

Note: When convenient, treat M as a set

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

Make a pure literal true.

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l
Guess a truth value for an unassigned literal.

Note: Lits(∆)def= {l ∣ l literal of ∆} ∪ {¬l ∣ l literal of ∆}
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Proof Rules for the Original DPLL

Repairing the assignment

{l1,⋯, ln} ∈∆ ¬l1,⋯,¬ln ∈M M =M ′ ● l N ● ∉ N
(Backtrack)

M ∶=M ′ ¬l
There is a conflicting clause and there is a decision point that we can backtrack to.
Backtrack to the last decision point and try the opposite value for the literal than last time.

Note: Last premise of Backtrack enforces chronological backtracking

{l1,⋯, ln} ∈∆ ¬l1, . . . ,¬ln ∈M ● ∉M
(Fail)

Fail

There is a conflicting clause and there are no decision points to backtrack to.
So the formula is unsatisfiable.
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Proof Rules for the Original DPLL

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l

{l1,⋯, ln} ∈∆ ¬l1,⋯,¬ln ∈M M =M′ ● l N ● ∉ N
(Backtrack)

M ∶=M′ ¬l

{l1,⋯, ln} ∈∆ ¬l1, . . . ,¬ln ∈M ● ∉M
(Fail)

Fail

Note: In DPLL, there are no rules to update ∆, the set of clauses. Such rules are
present in CDCL as we will see.
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DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail
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DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
...

How many steps (i.e., # of rule applications) does it take to derive Fail?

Work with your neighbor. Submit your answer at

https://pollev.com/andreww095

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail
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Transforming DPLL to Resolution

The search procedure of DPLL can be in fact reduced to a resolution proof (a
sequence of application of resolution rules).

For details, see Chapter 4.2 of “The Correctness of SAT Solvers and Related Issues” by
Lintao Zhang.
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DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

• No learning: throws away all the work performed to conclude that the current
partial assignment is bad. Revisits bad partial assignments that lead to the
conflict due to the same root cause.

• Chronological backtracking: backtracks one level, even if it can be deduced that
the current partial assignment became doomed at a lower level.

• Näıve decisions: picks an arbitrary variable to branch on. Fails to consider the
state of the search to make heuristically better decisions.
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Conflict-Driven Clause Learning (CDCL)

• Learning: ∆ is augmented with a conflict clause that summarizes the root cause
of the conflict.

• Non-chronological backtracking: backtracks b levels, based on the cause of the
conflict.

• Decision heuristics: choose the next literal to add to the current partial
assignment based on the state of the search.
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From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, add to states a third component C
whose value is either no or a clause (often referred to as the conflict clause).

States: Fail or ⟨M,∆,C ⟩

Initial state:

• ⟨(),∆0,no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,G ,no⟩ otherwise, where
- G is equivalent to ∆0 and
- M satisfies G
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From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to last. Backtrack
to a level that is < lev(l) and ≥ lev(ln)

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no
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From DPLL to CDCL Solvers

Modify Fail to

C ≠ no ● ∉M
(Fail)

Fail

C contains a conflict clause and there are no decision points to backjump to. So the
formula is unsatisfiable.
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CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!
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1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l
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C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}
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C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

C = {¬7} ∪ {¬2,¬5,6} {¬1,¬5,7} ∈∆ 1,5 ≺M 7
⇒ C = {¬1,¬5} ∪ {¬2,¬5,6} = {¬1,¬2,¬5,6}
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1 2 ¬5 ∆ no Backjump

1 2 ¬5 ● 3 ∆ no Decide
1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

lev(1) = 0 lev(2) = 0 lev(5) = 2
⇒ backtrack to M[0]¬5

Note: could backtrack to M[1]¬5 as well.
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From DPLL to CDCL Solvers

Also add

∆ ⊧ C C ∉∆
(Learn)

∆ ∶=∆ ∪ {C}

Learn can be applied to any clause stored in C when C ≠ no.

C = no ∆ =∆′ ∪ {C} ∆′ ⊧ C
(Forget)

∆ ∶=∆′

Memory can become quickly filled with millions of (conflict) clauses, so it would be nice to be
able to delete clauses.

(Restart)
M ∶=M[0] C ∶= no

If the solver got stuck in a hopeless branch, it would be nice to be able to restart altogether.
The progress is not completely lost due to Learn.
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Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the transition system
with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL
def=

{ Propagate, Decide, Conflict, Explain, Backjump }

CDCL
def= Basic CDCL + { Learn, Forget, Restart }
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The Basic CDCL System – Correctness

Note the following terminology:

Irreducible state: state for which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and starting with M = ∅ and
C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Refutation Soundness) For every exhausted execution starting with
∆ =∆0 and ending with Fail, the clause set ∆0 is unsatisfiable.

Proposition (Solution Soundness) For every exhausted execution starting with ∆ =∆0

and ending with C = no, the clause set ∆0 is satisfied by M.
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The CDCL System – Strategies

To ensure termination, apply 1) at least one Basic CDCL rule between each two Learn
applications; 2) Restart less and less often.

A common basic strategy applies the rules with
the following priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict

3. Apply Explain repeatedly

4. Apply Learn

5. Apply Backjump

6. Apply Propagate to completion

7. Apply Decide

Step 3-5 is called conflict analysis and there are some heuristic choices in this process.

• When to stop applying Explain to a conflict?

• Which level to Backjump to?
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2. If a clause is falsified by M, apply Conflict

3. Apply Explain repeatedly

4. Apply Learn

5. Apply Backjump
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7. Apply Decide
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Conflict Analysis: Implication Graph

The goal of clause learning is to blocks partial assignments that lead to the current conflict.

A common strategy is to learn an asserting clause, a conflict clause that is unit after
backtracking.

One way to illustrate different conflict analysis strategy is through implication graphs.

An implication graph is a labeled directed acyclic graph G(V, E), where:

• v ∈ V are literals of the current partial assignment. Each node is labeled with:

- the literal that it represents
- the decision level at which it entered the partial assignment

• e ∈ E are directed labeled edges:

- E = {(vi , vj)∣vi , vj ∈ V ,¬vi ∈ Antecedent(vj)}
- each edge (vi , vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with K and incoming edges
{(v ,K)∣¬v ∈ c} labeled with c for some conflicting clause c .

In this case, G is called a conflict graph.
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Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
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A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0C2

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1

C2

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
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A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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Any separating cut that breaks all paths from root nodes to conflict
node, with roots on the reason side and conflict node on the conflict
side, defines a valid conflict clause.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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Explain can be viewed as picking a literal l in the conflict clause C ,
and replace C with the l-resolvant of C and Antecedent(¬l).
In this case, we pick l ∶= ¬7.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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Explain can be viewed as picking a literal l in the conflict clause C ,
and replace C with the l-resolvant of C and Antecedent(¬l).
In this case, we pick l ∶= 6.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.
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Learning the First UIP

Empirical studies show that it is a good strategy to

• learn a conflict clause C such that the first UIP is the only literal at the current
decision level;

• backjump to the second lowest decision level among literals in C .

To compute such conflict clause, keep applying the Explain rule on the last assigned
literal in C , until the first UIP is the only literal at the current decision level.

The resulting conflict clause is an asserting clause.

Possible explanations for the results of the empirical studies:

• The strategy has a low computational cost, compared with stategies that choose
UIPs further away from the conflict.

• It backtracks to the lowest decision level.
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Non-chronological Backtracking is not Necessarily Better

See “Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.
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