
CS257: Introduction to Automated Reasoning
DPLL and CDCL



Plan

• DPLL

- Abstract DPLL

• CDCL (DP Chapter 2)

- Abstract CDCL
- Implication graphs

* Some of the slides today are contributed by Clark Barrett, Cesare Tinelli, and Emina Torlak.

October 11, 2023 CS257 1 / 26



The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL procedure

• DPLL tries to build incrementally a satisfying truth assignment M for a CNF
formula F

• M is grown by

- deducing the truth value of a literal from M and F , or
- guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the procedure backtracks
and tries the opposite value

October 11, 2023 CS257 2 / 26



DPLL as a Proof System

To facilitate a deeper look at DPLL, we present DPLL as a proof system called
Abstract DPLL.

The procedure described next is a re-elaboration of those in [1,2].

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).”,
Journal of the ACM, 53(6).

[2] Krstić and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.”, FroCos 2007.

October 11, 2023 CS257 3 / 26



Abstract DPLL: A Proof System for DPLL

States:

Fail or ⟨M,∆⟩

where

• M is a sequence of literals and decision points ● denoting a partial truth assignment

• ∆ is a set of clauses denoting a CNF formula

Def. If M =M0 ●M1 ● ⋯ ●Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i]
def= M0 ● ⋯ ●Mi

October 11, 2023 CS257 4 / 26



Abstract DPLL: A Proof System for DPLL

States:

Fail or ⟨M,∆⟩

Initial state:

• ⟨(),∆0⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,∆′⟩ otherwise, where
- ∆′ is equivalent to ∆0 and
- M satisfies ∆′

October 11, 2023 CS257 4 / 26



Some clause terminology

Given a partial assignment: {p1 ↦ 1,p2 ↦ 0,p4 ↦ 1}
• {p1,p3,¬p4} is satisfied
• {¬p1,p2} is conflicting
• {¬p1,p3,¬p4} is unit
• {¬p1,p3,p5} is unresolved
• p1 is assigned

• p3 is unassigned

One characteristic of DPLL-style SAT solvers is that given a partial assignment under
which a clause becomes unit, it must be extended so that it satisfies the unassigned
literal of this clause. Following this requirement is necessary but not sufficient for
satisfying the formula.

October 11, 2023 CS257 5 / 26



Some clause terminology

Given a partial assignment: {p1 ↦ 1,p2 ↦ 0,p4 ↦ 1}
• {p1,p3,¬p4} is satisfied
• {¬p1,p2} is conflicting
• {¬p1,p3,¬p4} is unit
• {¬p1,p3,p5} is unresolved
• p1 is assigned

• p3 is unassigned

One characteristic of DPLL-style SAT solvers is that given a partial assignment under
which a clause becomes unit, it must be extended so that it satisfies the unassigned
literal of this clause. Following this requirement is necessary but not sufficient for
satisfying the formula.

October 11, 2023 CS257 5 / 26



Abstract DPLL: Proof Rules for the Original DPLL

Extending the assignment

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

Deduce the values of unassigned literals in unit clauses.
The clause {l1,⋯, ln, l} is called the antecedent clause of l . Denoted by Antecedent(l).

Note: When convenient, treat M as a set

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

Make a pure literal true.

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l
Guess a truth value for an unassigned literal.

Note: Lits(∆)def= {l ∣ l literal of ∆} ∪ {¬l ∣ l literal of ∆}

October 11, 2023 CS257 6 / 26



Abstract DPLL: Proof Rules for the Original DPLL

Extending the assignment

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

Deduce the values of unassigned literals in unit clauses.
The clause {l1,⋯, ln, l} is called the antecedent clause of l . Denoted by Antecedent(l).

Note: When convenient, treat M as a set

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

Make a pure literal true.

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l
Guess a truth value for an unassigned literal.

Note: Lits(∆)def= {l ∣ l literal of ∆} ∪ {¬l ∣ l literal of ∆}

October 11, 2023 CS257 6 / 26



Abstract DPLL: Proof Rules for the Original DPLL

Extending the assignment

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

Deduce the values of unassigned literals in unit clauses.
The clause {l1,⋯, ln, l} is called the antecedent clause of l . Denoted by Antecedent(l).

Note: When convenient, treat M as a set

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

Make a pure literal true.

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l
Guess a truth value for an unassigned literal.

Note: Lits(∆)def= {l ∣ l literal of ∆} ∪ {¬l ∣ l literal of ∆}

October 11, 2023 CS257 6 / 26



Proof Rules for the Original DPLL

Repairing the assignment

{l1,⋯, ln} ∈∆ ¬l1,⋯,¬ln ∈M M =M ′ ● l N ● ∉ N
(Backtrack)

M ∶=M ′ ¬l
There is a conflicting clause and there is a decision point that we can backtrack to.
Backtrack to the last decision point and try the opposite value for the literal than last time.

Note: Last premise of Backtrack enforces chronological backtracking

{l1,⋯, ln} ∈∆ ¬l1, . . . ,¬ln ∈M ● ∉M
(Fail)

Fail

There is a conflicting clause and there are no decision points to backtrack to.
So the formula is unsatisfiable.

October 11, 2023 CS257 7 / 26



Proof Rules for the Original DPLL

Repairing the assignment

{l1,⋯, ln} ∈∆ ¬l1,⋯,¬ln ∈M M =M ′ ● l N ● ∉ N
(Backtrack)

M ∶=M ′ ¬l
There is a conflicting clause and there is a decision point that we can backtrack to.
Backtrack to the last decision point and try the opposite value for the literal than last time.

Note: Last premise of Backtrack enforces chronological backtracking

{l1,⋯, ln} ∈∆ ¬l1, . . . ,¬ln ∈M ● ∉M
(Fail)

Fail

There is a conflicting clause and there are no decision points to backtrack to.
So the formula is unsatisfiable.

October 11, 2023 CS257 7 / 26



Proof Rules for the Original DPLL

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

l literal of ∆ ¬l not literal of ∆ l ,¬l ∉M
(Pure)

M ∶=M l

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l

{l1,⋯, ln} ∈∆ ¬l1,⋯,¬ln ∈M M =M′ ● l N ● ∉ N
(Backtrack)

M ∶=M′ ¬l

{l1,⋯, ln} ∈∆ ¬l1, . . . ,¬ln ∈M ● ∉M
(Fail)

Fail

Note: In DPLL, there are no rules to update ∆, the set of clauses. Such rules are
present in CDCL as we will see.

October 11, 2023 CS257 8 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack

4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack

4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution example

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}

note: We abbreviate pn as n.

M ∆ rule
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● 1 ¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● 1 ¬2 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 ¬1¬2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ¬1 ¬2 ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 9 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
...

How many steps (i.e., # of rule applications) does it take to derive Fail?

Work with your neighbor. Submit your answer at

https://pollev.com/andreww095

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 10 / 26

https://pollev.com/andreww095


DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}

4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure
4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide

4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack

4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



DPLL execution: exercise

∆0 ∶= {{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}}
M ∆ rule

{1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4}
4 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Pure

4 ● ¬3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Decide
4 ● ¬3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 ● ¬3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

4 3 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Backtrack
4 3 2 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate
4 3 2 1 {1,¬2},{¬1,¬2},{2,3},{¬3,2},{1,4} Propagate

Fail

{l1,⋯, ln, l} ∈ ∆ ¬l1,⋯,¬ln ∈ M l,¬l ∉ M
(Propagate)

M ∶= M l

l literal of ∆ ¬l not literal of ∆ l,¬l ∉ M
(Pure)

M ∶= M l

{l1,⋯, ln} ∈ ∆ ¬l1,⋯,¬ln ∈ M M = M′ ● l N ● ∉ N
(Backtrack)

M ∶= M′ ¬l

l ∈ Lits(∆) l,¬l ∉ M
(Decide)

M ∶= M ● l

{l1,⋯, ln} ∈ ∆ ¬l1, . . . ,¬ln ∈ M ● ∉ M
(Fail)

Fail

October 11, 2023 CS257 11 / 26



Transforming DPLL to Resolution

The search procedure of DPLL can be in fact reduced to a resolution proof (a
sequence of application of resolution rules).

For details, see Chapter 4.2 of “The Correctness of SAT Solvers and Related Issues” by
Lintao Zhang.

October 11, 2023 CS257 12 / 26



DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

• No learning: throws away all the work performed to conclude that the current
partial assignment is bad. Revisits bad partial assignments that lead to the
conflict due to the same root cause.

• Chronological backtracking: backtracks one level, even if it can be deduced that
the current partial assignment became doomed at a lower level.

• Näıve decisions: picks an arbitrary variable to branch on. Fails to consider the
state of the search to make heuristically better decisions.

October 11, 2023 CS257 13 / 26



Conflict-Driven Clause Learning (CDCL)

• Learning: ∆ is augmented with a conflict clause that summarizes the root cause
of the conflict.

• Non-chronological backtracking: backtracks b levels, based on the cause of the
conflict.

• Decision heuristics: choose the next literal to add to the current partial
assignment based on the state of the search.

October 11, 2023 CS257 14 / 26



Conflict-Driven Clause Learning (CDCL)

• Learning: ∆ is augmented with a conflict clause that summarizes the root cause
of the conflict.

• Non-chronological backtracking: backtracks b levels, based on the cause of the
conflict.

• Decision heuristics: choose the next literal to add to the current partial
assignment based on the state of the search.

October 11, 2023 CS257 14 / 26



Conflict-Driven Clause Learning (CDCL)

• Learning: ∆ is augmented with a conflict clause that summarizes the root cause
of the conflict.

• Non-chronological backtracking: backtracks b levels, based on the cause of the
conflict.

• Decision heuristics: choose the next literal to add to the current partial
assignment based on the state of the search.

October 11, 2023 CS257 14 / 26



From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, add to states a third component C
whose value is either no or a clause (often referred to as the conflict clause).

States: Fail or ⟨M,∆,C ⟩

Initial state:

• ⟨(),∆0,no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,G ,no⟩ otherwise, where
- G is equivalent to ∆0 and
- M satisfies G

October 11, 2023 CS257 15 / 26



From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, add to states a third component C
whose value is either no or a clause (often referred to as the conflict clause).

States: Fail or ⟨M,∆,C ⟩

Initial state:

• ⟨(),∆0,no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,G ,no⟩ otherwise, where
- G is equivalent to ∆0 and
- M satisfies G

October 11, 2023 CS257 15 / 26



From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to last. Backtrack
to a level that is < lev(l) and ≥ lev(ln)

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no

October 11, 2023 CS257 16 / 26



From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to last. Backtrack
to a level that is < lev(l) and ≥ lev(ln)

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no

October 11, 2023 CS257 16 / 26



From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

Note: l ≺M l ′ if l occurs before l ′ in M

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l
Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to
last. Backtrack to a level that is < lev(l) and ≥ lev(ln)

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no

October 11, 2023 CS257 16 / 26



From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to last. Backtrack
to a level that is < lev(l) and ≥ lev(ln)

Note: lev(l) = i iff l occurs in decision level i of M

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no

October 11, 2023 CS257 16 / 26



From DPLL to CDCL Solvers
Replace Backtrack with three rules:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

The conflict clause is no, and there is a conflicting clause w.r.t. the current partial assignment M. So we set C
to the conflicting clause.

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

∆ contains a clause {l1,⋯, ln,¬l} such that 1) l is in the conflict clause; 2) ¬l is assigned true; 3) l1,⋯, ln are all
assigned false and are assigned before l . We can derive a new conflict clause C by applying resolution.

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

Compute the backtracking level: find the literals ¬l ,¬ln ∈ C that was assigned last and next to last. Backtrack
to a level that is < lev(l) and ≥ lev(ln)

Maintain invariant: ∆ ⊧ C and M ⊧ ¬C when C ≠ no

October 11, 2023 CS257 16 / 26



From DPLL to CDCL Solvers

Modify Fail to

C ≠ no ● ∉M
(Fail)

Fail

C contains a conflict clause and there are no decision points to backjump to. So the
formula is unsatisfiable.

October 11, 2023 CS257 17 / 26



From DPLL to CDCL Solvers

Modify Fail to

C ≠ no ● ∉M
(Fail)

Fail

C contains a conflict clause and there are no decision points to backjump to. So the
formula is unsatisfiable.

October 11, 2023 CS257 17 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4
1 2 ¬5 ∆ no Backjump

1 2 ¬5 ● 3 ∆ no Decide
1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

C = {¬7} ∪ {¬2,¬5,6} {¬1,¬5,7} ∈∆ 1,5 ≺M 7
⇒ C = {¬1,¬5} ∪ {¬2,¬5,6} = {¬1,¬2,¬5,6}

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

C = {6} ∪ {¬1,¬2,¬5} {¬5,¬6} ∈∆ 5 ≺M ¬6
⇒ C = {¬1,¬2,¬5} ∪ {¬5} = {¬1,¬2,¬5}

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1 2 ¬5 ● 3 ∆ no Decide
1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

lev(1) = 0 lev(2) = 0 lev(5) = 2
⇒ backtrack to M[0]¬5

Note: could backtrack to M[1]¬5 as well.

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

October 11, 2023 CS257 18 / 26



CDCL Execution Example

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule
∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump
1 2 ¬5 ● 3 ∆ no Decide

1 2 ¬5 ● 3 4 ∆ no Propagate SAT!

October 11, 2023 CS257 18 / 26



From DPLL to CDCL Solvers

Also add

∆ ⊧ C C ∉∆
(Learn)

∆ ∶=∆ ∪ {C}

Learn can be applied to any clause stored in C when C ≠ no.

C = no ∆ =∆′ ∪ {C} ∆′ ⊧ C
(Forget)

∆ ∶=∆′

Memory can become quickly filled with millions of (conflict) clauses, so it would be nice to be
able to delete clauses.

(Restart)
M ∶=M[0] C ∶= no

If the solver got stuck in a hopeless branch, it would be nice to be able to restart altogether.
The progress is not completely lost due to Learn.

October 11, 2023 CS257 19 / 26



From DPLL to CDCL Solvers

Also add

∆ ⊧ C C ∉∆
(Learn)

∆ ∶=∆ ∪ {C}

Learn can be applied to any clause stored in C when C ≠ no.

C = no ∆ =∆′ ∪ {C} ∆′ ⊧ C
(Forget)

∆ ∶=∆′

Memory can become quickly filled with millions of (conflict) clauses, so it would be nice to be
able to delete clauses.

(Restart)
M ∶=M[0] C ∶= no

If the solver got stuck in a hopeless branch, it would be nice to be able to restart altogether.
The progress is not completely lost due to Learn.

October 11, 2023 CS257 19 / 26



From DPLL to CDCL Solvers

Also add

∆ ⊧ C C ∉∆
(Learn)

∆ ∶=∆ ∪ {C}

Learn can be applied to any clause stored in C when C ≠ no.

C = no ∆ =∆′ ∪ {C} ∆′ ⊧ C
(Forget)

∆ ∶=∆′

Memory can become quickly filled with millions of (conflict) clauses, so it would be nice to be
able to delete clauses.

(Restart)
M ∶=M[0] C ∶= no

If the solver got stuck in a hopeless branch, it would be nice to be able to restart altogether.
The progress is not completely lost due to Learn.

October 11, 2023 CS257 19 / 26



Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the transition system
with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL
def=

{ Propagate, Decide, Conflict, Explain, Backjump }

CDCL
def= Basic CDCL + { Learn, Forget, Restart }

October 11, 2023 CS257 20 / 26



Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the transition system
with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL
def=

{ Propagate, Decide, Conflict, Explain, Backjump }

CDCL
def= Basic CDCL + { Learn, Forget, Restart }

October 11, 2023 CS257 20 / 26



Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the transition system
with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL
def=

{ Propagate, Decide, Conflict, Explain, Backjump }

CDCL
def= Basic CDCL + { Learn, Forget, Restart }

October 11, 2023 CS257 20 / 26



The Basic CDCL System – Correctness

Note the following terminology:

Irreducible state: state for which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and starting with M = ∅ and
C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Refutation Soundness) For every exhausted execution starting with
∆ =∆0 and ending with Fail, the clause set ∆0 is unsatisfiable.

Proposition (Solution Soundness) For every exhausted execution starting with ∆ =∆0

and ending with C = no, the clause set ∆0 is satisfied by M.

October 11, 2023 CS257 21 / 26



The Basic CDCL System – Correctness

Note the following terminology:

Irreducible state: state for which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and starting with M = ∅ and
C = no

Exhausted execution: execution ending in an irreducible state

Proposition(Strong Termination) Every execution in Basic CDCL is finite.

Note: This is not so immediate, because of Backjump.

Proposition (Refutation Soundness) For every exhausted execution starting with
∆ =∆0 and ending with Fail, the clause set ∆0 is unsatisfiable.

Proposition (Solution Soundness) For every exhausted execution starting with ∆ =∆0

and ending with C = no, the clause set ∆0 is satisfied by M.

October 11, 2023 CS257 21 / 26



The Basic CDCL System – Correctness

Note the following terminology:

Irreducible state: state for which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and starting with M = ∅ and
C = no

Exhausted execution: execution ending in an irreducible state

Proposition(Strong Termination) Every execution in Basic CDCL is finite.

Lemma Every exhausted execution ends with either C = no or Fail.

Proposition (Refutation Soundness) For every exhausted execution starting with
∆ =∆0 and ending with Fail, the clause set ∆0 is unsatisfiable.

Proposition (Solution Soundness) For every exhausted execution starting with ∆ =∆0

and ending with C = no, the clause set ∆0 is satisfied by M.

October 11, 2023 CS257 21 / 26



The Basic CDCL System – Correctness

Note the following terminology:

Irreducible state: state for which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and starting with M = ∅ and
C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Refutation Soundness) For every exhausted execution starting with
∆ =∆0 and ending with Fail, the clause set ∆0 is unsatisfiable.

Proposition (Solution Soundness) For every exhausted execution starting with ∆ =∆0

and ending with C = no, the clause set ∆0 is satisfied by M.

October 11, 2023 CS257 21 / 26



The CDCL System – Strategies

To ensure termination, apply 1) at least one Basic CDCL rule between each two Learn
applications; 2) Restart less and less often.

A common basic strategy applies the rules with
the following priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict

3. Apply Explain repeatedly

4. Apply Learn

5. Apply Backjump

6. Apply Propagate to completion

7. Apply Decide

Step 3-5 is called conflict analysis and there are some heuristic choices in this process.

• When to stop applying Explain to a conflict?

• Which level to Backjump to?

October 11, 2023 CS257 22 / 26



The CDCL System – Strategies

To ensure termination, apply 1) at least one Basic CDCL rule between each two Learn
applications; 2) Restart less and less often. A common basic strategy applies the rules with
the following priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict

3. Apply Explain repeatedly

4. Apply Learn

5. Apply Backjump

6. Apply Propagate to completion

7. Apply Decide

Step 3-5 is called conflict analysis and there are some heuristic choices in this process.

• When to stop applying Explain to a conflict?

• Which level to Backjump to?

October 11, 2023 CS257 22 / 26



The CDCL System – Strategies

To ensure termination, apply 1) at least one Basic CDCL rule between each two Learn
applications; 2) Restart less and less often. A common basic strategy applies the rules with
the following priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict

3. Apply Explain repeatedly

4. Apply Learn

5. Apply Backjump

6. Apply Propagate to completion

7. Apply Decide

Step 3-5 is called conflict analysis and there are some heuristic choices in this process.

• When to stop applying Explain to a conflict?

• Which level to Backjump to?
October 11, 2023 CS257 22 / 26



Conflict Analysis: Implication Graph

The goal of clause learning is to blocks partial assignments that lead to the current conflict.

A common strategy is to learn an asserting clause, a conflict clause that is unit after
backtracking.

One way to illustrate different conflict analysis strategy is through implication graphs.

An implication graph is a labeled directed acyclic graph G(V, E), where:

• v ∈ V are literals of the current partial assignment. Each node is labeled with:

- the literal that it represents
- the decision level at which it entered the partial assignment

• e ∈ E are directed labeled edges:

- E = {(vi , vj)∣vi , vj ∈ V ,¬vi ∈ Antecedent(vj)}
- each edge (vi , vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with K and incoming edges
{(v ,K)∣¬v ∈ c} labeled with c for some conflicting clause c .

In this case, G is called a conflict graph.

October 11, 2023 CS257 23 / 26



Conflict Analysis: Implication Graph

The goal of clause learning is to blocks partial assignments that lead to the current conflict.

A common strategy is to learn an asserting clause, a conflict clause that is unit after
backtracking.

One way to illustrate different conflict analysis strategy is through implication graphs.

An implication graph is a labeled directed acyclic graph G(V, E), where:

• v ∈ V are literals of the current partial assignment. Each node is labeled with:

- the literal that it represents
- the decision level at which it entered the partial assignment

• e ∈ E are directed labeled edges:

- E = {(vi , vj)∣vi , vj ∈ V ,¬vi ∈ Antecedent(vj)}
- each edge (vi , vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with K and incoming edges
{(v ,K)∣¬v ∈ c} labeled with c for some conflicting clause c .

In this case, G is called a conflict graph.

October 11, 2023 CS257 23 / 26



Conflict Analysis: Implication Graph

The goal of clause learning is to blocks partial assignments that lead to the current conflict.

A common strategy is to learn an asserting clause, a conflict clause that is unit after
backtracking.

One way to illustrate different conflict analysis strategy is through implication graphs.

An implication graph is a labeled directed acyclic graph G(V, E), where:

• v ∈ V are literals of the current partial assignment. Each node is labeled with:

- the literal that it represents
- the decision level at which it entered the partial assignment

• e ∈ E are directed labeled edges:

- E = {(vi , vj)∣vi , vj ∈ V ,¬vi ∈ Antecedent(vj)}
- each edge (vi , vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with K and incoming edges
{(v ,K)∣¬v ∈ c} labeled with c for some conflicting clause c .

In this case, G is called a conflict graph.

October 11, 2023 CS257 23 / 26



Conflict Analysis: Implication Graph

The goal of clause learning is to blocks partial assignments that lead to the current conflict.

A common strategy is to learn an asserting clause, a conflict clause that is unit after
backtracking.

One way to illustrate different conflict analysis strategy is through implication graphs.

An implication graph is a labeled directed acyclic graph G(V, E), where:

• v ∈ V are literals of the current partial assignment. Each node is labeled with:

- the literal that it represents
- the decision level at which it entered the partial assignment

• e ∈ E are directed labeled edges:

- E = {(vi , vj)∣vi , vj ∈ V ,¬vi ∈ Antecedent(vj)}
- each edge (vi , vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with K and incoming edges
{(v ,K)∣¬v ∈ c} labeled with c for some conflicting clause c .

In this case, G is called a conflict graph.

October 11, 2023 CS257 23 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no

1 ∆ no Propagate
1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate

1 2 ● 3 ∆ no Decide
1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0C2

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1

C2

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate

1 2 ● 3 4 ● 5 ∆ no Decide
1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

C2

C3

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2

C2

C3

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2

C2

C3

C4

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

C2

C3

C4

C5

C5

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

K@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

K@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

Any separating cut that breaks all paths from root nodes to conflict
node, with roots on the reason side and conflict node on the conflict
side, defines a valid conflict clause.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5

1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4
1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

K@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

Explain can be viewed as picking a literal l in the conflict clause C ,
and replace C with the l-resolvant of C and Antecedent(¬l).
In this case, we pick l ∶= ¬7.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

K@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

Explain can be viewed as picking a literal l in the conflict clause C ,
and replace C with the l-resolvant of C and Antecedent(¬l).
In this case, we pick l ∶= 6.

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Revisiting CDCL Execution Example with Implication Graph

∆ ∶= {C1 ∶ {1},C2 ∶ {¬1,2},C3 ∶ {¬3,4},C4 ∶ {¬5,¬6},C5 ∶ {¬1,¬5,7},C6 ∶ {¬2,¬5,6,¬7}}

M ∆ C rule

∆ no
1 ∆ no Propagate

1 2 ∆ no Propagate
1 2 ● 3 ∆ no Decide

1 2 ● 3 4 ∆ no Propagate
1 2 ● 3 4 ● 5 ∆ no Decide

1 2 ● 3 4 ● 5 ¬6 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ no Propagate
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬2,¬5,6,¬7} Conflict
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5,6} Explain w. C5
1 2 ● 3 4 ● 5 ¬6 7 ∆ {¬1,¬2,¬5} Explain w. C4

1 2 ¬5 ∆ no Backjump

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

K@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

A Unique Implication Point (UIP) is any node other than K that is
on all paths from the current decision node to K.
A first UIP is a UIP that is closest to the conflict node.
In this case, 5@2 is the only UIP and thus also the first UIP.

October 11, 2023 CS257 24 / 26



Learning the First UIP

Empirical studies show that it is a good strategy to

• learn a conflict clause C such that the first UIP is the only literal at the current
decision level;

• backjump to the second lowest decision level among literals in C .

To compute such conflict clause, keep applying the Explain rule on the last assigned
literal in C , until the first UIP is the only literal at the current decision level.

The resulting conflict clause is an asserting clause.

Possible explanations for the results of the empirical studies:

• The strategy has a low computational cost, compared with stategies that choose
UIPs further away from the conflict.

• It backtracks to the lowest decision level.

October 11, 2023 CS257 25 / 26



Learning the First UIP

Empirical studies show that it is a good strategy to

• learn a conflict clause C such that the first UIP is the only literal at the current
decision level;

• backjump to the second lowest decision level among literals in C .

To compute such conflict clause, keep applying the Explain rule on the last assigned
literal in C , until the first UIP is the only literal at the current decision level.

The resulting conflict clause is an asserting clause.

Possible explanations for the results of the empirical studies:

• The strategy has a low computational cost, compared with stategies that choose
UIPs further away from the conflict.

• It backtracks to the lowest decision level.

October 11, 2023 CS257 25 / 26



Learning the First UIP

Empirical studies show that it is a good strategy to

• learn a conflict clause C such that the first UIP is the only literal at the current
decision level;

• backjump to the second lowest decision level among literals in C .

To compute such conflict clause, keep applying the Explain rule on the last assigned
literal in C , until the first UIP is the only literal at the current decision level.

The resulting conflict clause is an asserting clause.

Possible explanations for the results of the empirical studies:

• The strategy has a low computational cost, compared with stategies that choose
UIPs further away from the conflict.

• It backtracks to the lowest decision level.

October 11, 2023 CS257 25 / 26



Non-chronological Backtracking is not Necessarily Better

See “Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.

October 11, 2023 CS257 26 / 26


