
CS257: Introduction to Automated Reasoning
Normal Forms, DP



Agenda

• NNF, DNF, CNF (CC Ch. 1.6)

• Tseitin Transformation (MI Ch. 1.6)

• SAT-solving overview

• DP (CC Ch. 1.7)

Next lecture: DPLL and CDCL.

We will focus on one important application of SAT, model checking, on 10/11.

You will write a SAT-based Sudoku solver in the homework.

* Some of the slides today are contributed by Clark Barrett, Emina Torlak, and Cesare Tinelli.

October 11, 2023 CS257 1 / 33



Normal forms

A normal form of formulas is a syntactic restriction such that every formula of the
logic, there is an equivalent formula in the normal form.

Three normal forms are important for propositional logic.

• Negation normal form (NNF)

• Disjunctive normal form (DNF)

• Conjunctive normal form (CNF)

October 11, 2023 CS257 2 / 33



Negation normal form (NNF)
• Only logical connectives: ∧,∨, and ¬.

• ¬ only appear in literals

Atom := ⊺ ∣ � ∣ Variable

Literal := Atom ∣ ¬Atom

Formula := Literal ∣ Formula ∨ Formula ∣ Formula ∧ Formula

¬p ∧ q is in NNF, but ¬(p ∨ q) is not in NNF

Every wff α (not containing ↔) can be transformed into an equivalent NNF α′ with linear
increase in the size (i.e., # of symbols) of the formula:

• Rewrite →: (α1 → α2)⇔ (¬α1 ∨ α2)

• Apply De Morgan’s rules:

- ¬(α1 ∨ α2): ¬(α1 ∨ α2)⇔ (¬α1 ∧ ¬α2)
- ¬(α1 ∧ α2): ¬(α1 ∧ α2)⇔ (¬α1 ∨ ¬α2)

• Rewrite double negations:
¬¬α1⇔ α1

• ¬⊺⇔ �

• ¬�⇔ ⊺

Question: what if the original formula contains ↔?

(α1 ↔ α2)⇔ (α1 → α2) ∧ (α2 → α1)

October 11, 2023 CS257 3 / 33



Disjunctive normal form (DNF)

• Formula is in NNF

• Formula is a conjunction of disjunctions of literals, i.e., of the form:

⋁
i

(⋀
j

lij)
Atom := ⊺ ∣ � ∣ Variable

Literal := Atom ∣ ¬Atom

Clause := Literal ∣ Literal ∧ Clause

Formula := Clause ∣ Clause ∨ Formula

e.g., (p ∧ q ∧ ¬r) ∨ (¬p ∧ s) ∨ (r ∧ ¬q ∧ ¬s)

Every wff α can be transformed into an equivalent DNF α′, while potentially
exponentially increasing the size (# of terms) of the formula:

• Convert α to NNF
• Distribute ∧ over ∨ (cause of exponential increase):

- α1 ∧ (α2 ∨ α3)⇔ (α1 ∧ α2) ∨ (α1 ∧ α3)
- (α1 ∨ α2) ∧ α3⇔ (α1 ∧ α3) ∨ (α2 ∧ α3)

• Flatten out nested conjunctions and disjunctions.
October 11, 2023 CS257 4 / 33



Exercise

Translate the formula into DNF: ¬((p ∨ ¬q)→ r).

Submit your answers at

https://pollev.com/andreww095

NNF translation:

• Rewrite →: (α1 → α2)⇔ (¬α1 ∨ α2)
• Apply De Morgan’s rules:

- ¬(α1 ∨ α2):
¬(α1 ∨ α2)⇔ (¬α1 ∧ ¬α2)

- ¬(α1 ∧ α2):
¬(α1 ∧ α2)⇔ (¬α1 ∨ ¬α2)

• Rewrite double negations: ¬¬α1⇔ α1

• ¬⊺⇔ �,¬�⇔ ⊺

DNF translation:

• Convert α to NNF

• Distribute ∧ over ∨ (cause of exponential

increase):

- α1∧(α2∨α3)⇔ (α1∧α2)∨(α1∧α3)
- (α1∨α2)∧α3⇔ (α1∧α3)∨(α2∧α3)

• Flatten out nested conjunctions and
disjunctions.

October 11, 2023 CS257 5 / 33

https://pollev.com/andreww095


Exercise

Translate the formula into DNF: ¬((p ∨ ¬q)→ r).

• ⇔ ¬(¬(p ∨ ¬q) ∨ r) (Rewrite →)
• ⇔ ¬¬(p ∨ ¬q) ∧ ¬r (De Morgan’s rules)

• ⇔ (p ∨ ¬q) ∧ ¬r (Rewrite ¬¬)
• ⇔ (p ∧ ¬r) ∨ (¬q ∧ ¬r) (Distribute ∧ over ∨)

October 11, 2023 CS257 6 / 33



Conjunctive normal form (CNF)

• Formula is in NNF

• Formula is a disjunction of conjunctions of literals, i.e., of the form:

⋀
i

(⋁
j

lij)
Atom := ⊺ ∣ � ∣ Variable

Literal := Atom ∣ ¬Atom

Clause := Literal ∣ Literal ∧ Clause

Formula := Clause ∣ Clause ∨ Formula

e.g., (p ∨ q ∨ ¬r) ∧ (¬p ∨ s) ∧ (r ∨ ¬q ∨ ¬s)

Every wff α can be transformed into an equivalent CNF α′, while potentially
exponentially increasing the size of the formula:

• Convert α to NNF
• Distribute ∨ over ∧ (cause of exponential increase):

- α1 ∨ (α2 ∧ α3)⇔ (α1 ∨ α2) ∧ (α1 ∨ α3)
- (α1 ∧ α2) ∨ α3⇔ (α1 ∨ α3) ∧ (α2 ∨ α3)

• Flatten out nested conjunctions and disjunctions.
October 11, 2023 CS257 7 / 33



DNF vs. CNF for satisfiability-checking

DNF:

• Deciding satisfiability can be done in linear time with one traversal of the clauses.

- The DNF is unsat. iff every clause contains both a literal and its negation.

• Converting into an equivalent DNF can result in exponential size increase.

CNF:

• Deciding satisfiability is hard.

• Converting into an equivalent CNF can result in exponential size increase.

• Converting into an equi-satisfiable (i.e., has the same satisfiability) CNF can be
done with linear size increase!

Modern SAT solvers expect CNF input.

They choose to optimize the runtime of the decision procedure rather than the
conversion procedure.

October 11, 2023 CS257 8 / 33



Boolean Gates

Consider an electrical device having n inputs and one output. Assume that to each
input we apply a signal that is either T or F, and that this uniquely determines whether
the output is T or F.

The behavior of such a device is described by a Boolean function:

F (X1, . . . ,Xn) = the output signal given the input signals X1, . . . ,Xn.

We call such a device a Boolean gate.

The most common Boolean gates are AND, OR, and NOT gates.

October 11, 2023 CS257 9 / 33



Boolean Circuits

The inputs and outputs of Boolean gates can be connected together to form a
combinational boolean circuit.

p1
p2

p3

p4

A combinational Boolean circuit corresponds to a directed acyclic graph (DAG)
whose leaves are inputs and each of whose nodes is labeled with the name of a
Boolean gate. One or more of the nodes may be identified as outputs.

October 11, 2023 CS257 10 / 33



Boolean Circuits

The inputs and outputs of Boolean gates can be connected together to form a
combinational Boolean circuit.

p1
p2

p3

p4

There is a natural correspondence between Boolean circuits and formulas of
propositional logic. The formula corresponding to the above circuit is:

(p4 ∧ (p1 ∧ p2)) ∨ ((p1 ∧ p2) ∧ ¬p3).

A satisfying assignment for this formula gives the values that must be applied to the
inputs of the circuit in order to set the output of the circuit to true.

October 11, 2023 CS257 11 / 33



Sharing Sub-formulas

(p4 ∧ (p1 ∧ p2)) ∨ ((p1 ∧ p2) ∧ ¬p3)

There is an redundancy in the formula: the formula (p1 ∧ p2) appears twice. For larger
circuits, this sort of redundancy can result in an exponential blowup in formula size.

Since we are only concerned with the satisfiability of the formula, we can overcome
this inefficiency by introducing new propositional symbols. These new symbols
essentially act as placeholders for redundant sub-expressions.

October 11, 2023 CS257 12 / 33



Sharing Sub-formulas

Original formula:
(p4 ∧ (p1 ∧ p2)) ∨ ((p1 ∧ p2) ∧ ¬p3)

New formula:
((p4 ∧ p5) ∨ (p5 ∧ ¬p3)) ∧ (p5 ↔ (p1 ∧ p2))

Discuss with your neighbors. Is the new formula logically equivalent to the original
formula?

No, but it is equisatisfiable (i.e. the original formula is satisfiable iff the new formula is
satisfiable).

October 11, 2023 CS257 13 / 33



Converting to CNF: Tseitin’s Transformation

This same idea is behind a simple algorithm for converting any propositional formula (or an
associated Boolean circuit) into an equisatisfiable formula in conjunctive normal form (CNF) in
linear time. We will view the formula or circuit as a directed acyclic graph (DAG).

Step 1: Label each non-leaf node of the DAG with a new propositional symbol.

p1

p2

p3

p4

p5

p6

p7

p8

p9

October 11, 2023 CS257 14 / 33



Converting to CNF: Tseitin’s Transformation

Step 2: Construct a conjunction of disjunctive
clauses which relate the inputs of that node to
its output (the new propositional symbol).

(p1 ∧ p2)↔ p5
⇒ ((p1 ∧ p2)→ p5) ∧ (p5 → (p1 ∧ p2))
⇒ (¬(p1 ∧ p2) ∨ p5) ∧ (¬p5 ∨ (p1 ∧ p2))
⇒ (¬p1 ∨ ¬p2 ∨ p5) ∧ (¬p5 ∨ p1) ∧ (¬p5 ∨ p2)

(¬p3)↔ p6
⇒ ((¬p3)→ p6) ∧ (p6 → (¬p3))
⇒ (p3 ∨ p6) ∧ (¬p6 ∨ ¬p3)

(p4 ∧ p5)↔ p7
⇒ (¬p4 ∨ ¬p5 ∨ p7) ∧ (¬p7 ∨ p4) ∧ (¬p7 ∨ p5)

p1

p2

p3

p4

p5

p6

p7

p8

p9

(p5 ∧ p6)↔ p8
⇒ (¬p5∨¬p6∨p8)∧(¬p8∨p5)∧(¬p8∨p6)

(p7 ∨ p8)↔ p9
⇒ ((p7 ∨ p8)→ p9) ∧ (p9 → (p7 ∨ p8))
⇒ (¬(p7 ∨ p8) ∨ p9) ∧ (¬p9 ∨ (p7 ∨ p8))
⇒ (¬p7∨p9)∧(¬p8∨p9)∧(¬p9∨p7∨p8)

October 11, 2023 CS257 15 / 33



Converting to CNF: Tseitin’s Transformation

Step 3: The conjunction of all of these
clauses together with a single clause
consisting of the symbol for the root
node is satisfiable iff the original formula
is satisfiable.

p1
p2

p3

p4

p5

p6

p7

p8

p9

α ∶= (p4 ∧ (p1 ∧ p2)) ∨ ((p1 ∧ p2) ∧ ¬p3)
⇒
(¬p1 ∨ ¬p2 ∨ p5) ∧ (¬p5 ∨ p1) ∧ (¬p5 ∨ p2)∧
(p3 ∨ p6) ∧ (¬p6 ∨ ¬p3)∧
(¬p4 ∨ ¬p5 ∨ p7) ∧ (¬p7 ∨ p4) ∧ (¬p7 ∨ p5)∧
(¬p5 ∨ ¬p6 ∨ p8) ∧ (¬p8 ∨ p5) ∧ (¬p8 ∨ p6)∧
(¬p7 ∨ p9) ∧ (¬p8 ∨ p9) ∧ (¬p9 ∨ p7 ∨ p8)∧
(p9)

October 11, 2023 CS257 16 / 33



Decision procedure for propositional logic

We will describe procedures for checking the satisfiability of a wff in propositional logic.

From now on, unless otherwise indicated, we assume formulas are in CNF.

We denote a formula in CNF as ∆, which can be regarded as a set of clauses
{C1, ...Cn}. Each clause Ci can be regarded as a set of literals {l1, ..., ln}.

∆ is satisfiable if and only if there exists a variable assignment that satisfies each
clause Ci .

Example: the CNF formula ∆ ∶= (p1 ∨ p3) ∧ (¬p1 ∨ p2 ∨ ¬p3) can be represented as
{{p1,p3},{¬p1,p2,¬p3}}.

{p1 ∶ 1,p2 ∶ 1,p3 ∶ 0} is a satisfying assignment to ∆.

October 11, 2023 CS257 17 / 33



SAT Solver Overview: features

Software for tackling the satisfiability problem of CNF formulas are called SAT-solvers.

Two main categories of modern SAT solvers:

• Backtracking algorithms

- traversing and backtracking on a binary tree
- Sound and complete.

• Stochastic search

- solver guesses a full assignment
- if the formula is evaluated to false under this assignment, starts to flip values of
variables according to some (greedy) heuristic.

- Sound and incomplete.

We focus on the former in this class.

October 11, 2023 CS257 18 / 33



SAT Solver Overview: performance

• How well do SAT solvers do in practice, since they’re trying to solve an
NP-compete problem?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time.

- There are also instances of problems two orders of magnitude smaller that these
tools cannot solve.

- In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

• SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

October 11, 2023 CS257 19 / 33



SAT Solver Overview: performance

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
an

ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

• Left: Size of industrial CNF formulas (y-axis) that are regularly solved by SAT solvers in a
few hours according to year (x-axis). Instances are generated for solving realistic problems
like verification of circuits and planning problems.

• Right: Top contenders in annual SAT solver competitions from 2002-2020. A data point
means some number of benchmarks (y-axis) was solved with some amount of time
(x-axis). Num. instances solved within 20 minutes more than doubled in the decade.

October 11, 2023 CS257 20 / 33



The DIMACS format

A standard format for CNF formulas accepted by most (if not all) modern SAT solvers.

• Comment lines: Start with a lower-case letter c

• Problem line: p cnf < #variables > < #clauses >
• Clause lines:

- Each variable is assigned a unique index i greater than 0
- A positive literal is represented by an index
- A negative literal is represented by the negation of an index
- A clause is represented as a list of literals
- The value “0” is used to mark the end of a clause.

Example:

(p1 ∨ ¬p3)∧ (p2 ∨ p3 ∨ ¬p1)
c example.cnf
p cnf 3 2
1 -3 0
2 3 -1 0

October 11, 2023 CS257 21 / 33



Basic SAT solvers

• 1960: Davis-Putnam (DP) algorithm

• 1961: Davis–Putnam–Logemann–Loveland (DPLL) algorithm

• Modern SAT solver based on Conflict-driven clause learning (CDCL) (1996) is
derived from DP and DPLL.

October 11, 2023 CS257 22 / 33



A key feature of CNF: Resolution

Starting from the initial set of clauses ∆, there is a simple inference rule, called
resolution, by which new clauses can be derived:

p ∈ V p ∈ C1 ¬p ∈ C2 C1,C2 ∈∆ (resolution)
∆ ∪ {(C1 − {p}) ∪ (C2 − {¬p})}

The rule reads: “If C1 and C2 are satisfiable, then the clause below is satisfiable.”

The new clause is called a p-resolvant (or simply resolvant when the context is clear)
derived from C1 and C2.

The resolvant can be added as a clause to ∆.

Example: Consider ∆ ∶= {{p1,p3},{p2,¬p3}}. {p1,p2} is a p3-resolvant of the two
clauses. ∆ and ∆ ∪ {p1,p2} are equivalent. ∆ and {p1,p2} are equi-satisfiable.

October 11, 2023 CS257 23 / 33



Proof by resolution

Proving that a CNF is unsatisfiable can be done with just the resolution rule.

Example: Prove that the following CNF formula is unsatisfiable.

∆ ∶= {C1,C2,C3,C4}
∶= {{p1,p2},{p1,¬p2},{¬p1,p3},{¬p1,¬p3}}

1. C5 ∶= {p1} (C1,C2)

2. C6 ∶= {p3} (C3,C5)

3. C7 ∶= {¬p3} (C4,C5)

4. C8 ∶= {} (C6,C7)

A resolution proof is a proof by contradiction: if ∆ is satisfiable, then C8, the empty
clause, is satisfiable.

October 11, 2023 CS257 24 / 33



Proof by resolution

Imagine a procedure for SAT with resolution:

• Apply resolution until either

1. an empty clause is derived (return unsat)
2. it can no longer be applied to produce new clauses (return sat)

Let us then add the clashing clause rule, the satisfying rule and refuting rule:

{} ∈∆
(unsat)unsat

Cannot apply Res. to produce new clauses
(sat)sat

Is the resolution proof system refutation sound? Yes.
Is the resolution proof system solution sound? Yes.
Is the resolution proof system complete? Yes.
Is the resolution proof system terminating? Yes.

October 11, 2023 CS257 25 / 33



Unit resolution

The unit resolution rule is a special case of the resolution rule where one clause,
called the unit clause, consists of a single literal (i.e., a variable or the negation of a
variable):

p ∈ V C1 ∶= {p} ¬p ∈ C2 C1,C2 ∈∆
(unit resolution 1)

∆ ∪ (C2 − {¬p})}

p ∈ V C1 ∶= {¬p} p ∈ C2 C1,C2 ∈∆
(unit resolution 2)

∆ ∪ (C2 − {p})}

A proof system with unit resolution alone is incomplete (e.g., a CNF where each clause
has length ≥ 2).

Modern SAT solvers use unit resolution in combination with backtracking search to
implement a sound and complete procedure for deciding CNF formulas.

October 11, 2023 CS257 26 / 33



DP Algorithm

The DP algorithm leverages 4 satisfiabiliy-preserving transformations:

• Unit propagataion rule (or 1-literal rule)

• Pure literal rule (or affirmation-negation rule)

• Resolution rule (or rule for eliminiating atomic formulas)

• Clashing clause rule

The first two rules reduce the total number of literals in the formula. The third rule
reduces the number of variables in the formula.

First algorithm to try something more sophisticated than the truth table.

By repeatedly applying these rules, eventually we obtain a formula containing an empty
clause, indicating unsatisfiability, or a formula with no clauses, indicating satisfiability.

October 11, 2023 CS257 27 / 33



DP Algorithm: unit propagation rule

Also called the 1-literal rule.

Premise: The cnf ∆ contains a unit clause, {p}. We assume all double negations are
collapsed (i.e., ¬¬p⇒ p).

Conclusion:
• Remove all instances of ¬p from clauses in the formula (shortening the
corresponding clauses).

• Remove all clauses containing p (including the unit clause itself).

Justification: The unit clause must be satisfied, because we have a CNF. This rule
effectively assigns p to true. Thus, ¬p cannot be used to satisfy another clause.

Example: ∆0 ∶= {p1},{p1,p4},{p2,p3,¬p1}

∆1 ∶= {p4},{p2,p3} (unit propagation on p1)

∆2 ∶= {p2,p3} (unit propagation on p4)

October 11, 2023 CS257 28 / 33



DP Algorithm: pure literal rule

Also called the affirmation-negation rule.

Premise: A variable p appears only positively or only negatively in ∆.

Conclusion: delete all clauses containing that variable.

Justification: If a literal only ever appears positively/negatively, its atom can be
assigned in a way that causes the literal to evaluate to true. Thus, all clauses
containing this literal can be deleted since they are satisfied.

Example: ∆0 ∶= {p1,p2,¬p3},{¬p1,p4},{¬p3,¬p2},{¬p3,¬p4}

∆1 ∶= {¬p1,p4} (pure literal rule on p3)

October 11, 2023 CS257 29 / 33



DP Algorithm: resolution rule

Also called the rule for eliminating atomic formulas.

Premise: There exists two different clauses C ,C ′ ∈∆ and variable p, where p ∈ C and
¬p ∈ C ′.

Conclusion:
• Let P be the set of clauses in ∆ where p occurs positively.

• Let N be the set of clauses in ∆ where p occurs negatively.

• Replace the clauses in P and N with those obtained by resolution on p using all
pairs of clauses from P and N.

Example: ∆0 ∶= {p1,p2},{¬p1,p3},{¬p1,¬p3,p4}

∆1 ∶= {p2,p3},{p2,¬p3,p4} (resolution rule on p1)

October 11, 2023 CS257 30 / 33



DP Algorithm: clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p.

Conclusion: remove C from ∆.

Justification: C is satisfied regardless of whether p is assigned 0 or 1.

October 11, 2023 CS257 31 / 33



DP Example

∆ ∶= {{p1,p2,p3},{p2,¬p3,¬p6},{¬p2,p5}}

{p1,p2,p3} {p2,¬p3,¬p6} {¬p2,p5}Res. p2

{¬p3,¬p6,p5}{p1,p3,p5}Res. p3

{p1,p5,¬p6}PL. p1

∅SAT

∆ ∶= {{p1,p2},{p1,¬p2},{¬p1,p3},{¬p1,¬p3}}

{p1,p2} {p1,¬p2} {¬p1,p3} {¬p1,¬p3}Res. p2

{p1} {¬p1,p3}{¬p1,¬p3}UP p1

{p3} {¬p3}Res. p3

()UNSAT

October 11, 2023 CS257 32 / 33



From DP to DPLL

Resolution can increase the number of clauses but not variables.

Question: if a variable appears positively in 3 clauses and negatively in 3 clauses. How
many clauses after applying resolution? 9 in the worst case.

In the worst case, the resolution rule can cause a quadratic expansion every time it is
applied. For large formulas, this can quickly exhaust the available memory.

The DPLL algorithm replaces resolution with a splitting rule:

• Choose a literal l occurring in the formula.

• Let ∆ be the current set of clauses.

• Test the satisfiability of ∆ ∪ {l}.
- If satisfiable, return True.
- If unsatisfiable, backtrack and return the result of
∆ ∪ {¬l} for satisfiability.

We discuss DPLL in more details next time.

Search: find a satisfying assign-
ment by guessing possible assign-
ments one by one.

Deduction: Deduce new facts
from a set of know facts.

Backtrack and make a different
guess if we guessed wrong.

October 11, 2023 CS257 33 / 33


