
CS257: Introduction to Automated Reasoning
Theory Combination



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a = b + 2 ∧ A = write(B, a + 1,4) ∧
(read(A,b + 3) = 2 ∨ f (a − 1) ≠ f (b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them modularly into one for
TLA ∪TA ∪TUF?

Under certain conditions, we can do it with the Nelson-Oppen combination method
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Reminder: First-Order Logic Symbols

The syntax of many-sorted FOL is defined with respect to a signature, Σ ∶= {ΣS ,ΣF},
where:

• ΣS is a set of sorts: e.g., Real, Int,Set

• ΣF is a set of function symbols: e.g., ∈,+,+[2],<,≬

In addition to the function symbols, the alphabet of FOL also contains logical symbols:

• Parentheses: “(”, “)”

• Propositional connectives: →, ¬
• Variables: v1, v2, . . .

• Quantifiers: ∀
• Equality symbol: for each sort σ in ΣS , there may be an optional symbol =σ.
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Reminder: First-Order Logic Signatures

The syntax of many-sorted FOL is defined with respect to a signature, Σ ∶= {ΣS ,ΣF},
where:

• ΣS is a set of sorts: e.g., Real, Int,Set

• ΣF is a set of function symbols: e.g., ∈,+,+[2],<,≬

For each variable v , we associate a sort sort(v) ∈ ΣS .

For each function symbol f ∈ ΣF we associate an arity n, which is a natural number
denoting the number of arguments f takes, and an n + 1-tuple of sorts:
sort(f ) = ⟨σ1, . . . , σn, σn+1⟩. We say f returns σn+1.

Example: The function symbol + has arity 2, and sort(+) = ⟨Real ,Real ,Real⟩ in the
intended translation.
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Reminder: First-Order Logic Signatures

We assume that ΣS always includes a distinguished sort Bool and that ΣF contains
distinguished symbols {⊺,�}.
We assume sort(�) = sort(⊺) = ⟨Bool⟩
There are two special kinds of functions, constant symbols and predicate symbols:

• Constant symbols are 0-arity function symbols: e.g., �, ⊺, π, John, 0
• A predicate symbol is a function symbol that returns Bool

- Each equality symbol =σ is a predicate symbol with arity 2 and
sort(=σ) = ⟨σ,σ,Bool⟩.

Example: sort(∈) = ⟨Set,Set,Bool⟩ in the intended translation.

To specify which first-order language we have before us, we need to:

• say whether the equality symbol is present;

• define the signature.
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Reminder: First-Order Logic Semantics

Formally, the truth of a Σ-formula is determined by an interpretation I of Σ
consisting of the following:

1. For each sort σ ∈ ΣS , a nonempty set called the domain of σ, written dom(σ)
- We always assume dom(Bool) = {T,F}

2. A mapping from each n-ary function symbol f in ΣF of sort
sort(f ) = ⟨σ1, . . . , σn, σn+1⟩ to f I , an n-ary function from dom(σ1) ×⋯ × dom(σn)
to dom(σn+1)

- We always assume �I = F, ⊺I = T, and =Iσ ab = T iff a = b
3. A mapping from each variable v of sort σ to its interpretation v I , an element of

dom(σ)

(1) and (2) without (3) is called a structure or a model.
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First-order theories and their combination

A theory T is a pair (Σ,S), where:

• Σ is a signature, which we recall from Lecture 4 consists of a set ΣS of sorts and
a set ΣF of function symbols.

• S is a class (in the sense of set theory) of Σ-structures.

We limit interpretations of Σ-formulas to those that have their structures in S .

Theory combination: Let T1 = (Σ1,S1) and T2 = (Σ2,S2) be two theories. The
combination of T1 and T2 is the theory T1 ⊕T2 = (Σ,S) where Σ = Σ1 ∪Σ2 and S =
{Σ-structures I ∣ IΣ1,∅ ∈ S1 and IΣ2,∅ ∈ S2}.
Above, I is an interpretation, and IΣ,U denotes the interpretation obtained by
interpreting symbols in Σ and variables in U. Structures do not interpret variables, so
U is empty above.

December 4, 2023 CS257 6 / 28



Theory Combination: Preliminaries

First-order theories without the equality symbol are rarely considered. We will follow
this convention.

Convex theory: A Σ-theory T is convex if for every conjunctive Σ-formula ϕ:

(ϕ→ ⋁n
i=1 xi = yi) is T-valid for some finite n > 1 →

(ϕ→ xi = yi) is T-valid for some i ∈ 1, ...,n,
where xi , yi , for i ∈ 1, ...,n, are some variables.
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Theory Combination: Preliminaries

Example (convex): Linear real arithmetic is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x ≤ 3 ∧ x ≥ 3→ x = 3
or infinitely large, and hence it implies an infinite disjunction. All three cases fit the
definition of convexity.

Example (non-convex): Linear integer arithmetic is non-convex. For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ (x3 = 1 ∨ x3 = 2) holds, neither
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = 1, nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = 2 holds.

Many theories used in practice are nonconvex, which makes them computationally
harder to combine with other theories due to case splits, which we’ll see.
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Nelson-Oppen: Step 1, Purification

Given decision procedures for the satisfiability of formulas in theories T1 and T2, we
are interested in constructing a decision procedure for the satisfiability of T1 ⊕T2.

Given a conjunctive formula ϕ (i.e., a conjunction of literals) over the combined
signature Σ1 ∪Σ2, the first step is to purify ϕ by constructing and equisatisfiable set of
conjunctive formulas ϕ1 ∪ ϕ2 such that each ϕi consists of only Σi -formulas.

Purification:

Given a conjunctive formula, ϕ:

1. Find a pure sub-term (i.e., a Σi -sub-term for some i), t.

2. Replace t with a fresh variable v , and add the term v = t to the conjunctive
formula.

3. Repeat steps 1 and 2 until all atomic formulas are pure.

4. Split the resulting conjunctive formula into two formulas ϕ1 ∪ ϕ2, which are linked
by a set of shared variables.
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Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪TUF

(TLRA, linear real arithmetic):

f (f (x) − f (y)) = a
f (0) > a + 2

x = y

First step: purify literals so that each belongs to a single theory

f (f (x) − f (y)) = a Ô⇒ f (e1) = a Ô⇒ f (e1) = a
e1 = f (x) − f (y) e1 = e2 − e3

e2 = f (x)
e3 = f (y)

f (0) > a + 2 Ô⇒ f (e4) > a + 2 Ô⇒ f (e4) = e5
e4 = 0 e4 = 0

e5 > a + 2
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Nelson-Oppen: Step 2, Exchange Interface Equalities

Formulas ϕ1 and ϕ2, which were produces through purification are linked by a set of
shared variables. Let V = shared(ϕ1, ϕ2) be these shared variables.

Let E be an equivalence relation over V. The arrangement A(V ,E) of V induced by E
is the formula:

A(V ,E) ∶ ⋀
u,v∈V .uEv

u = v ∧ ⋀
u,v∈V .¬uEv

u ≠ v ,

which asserts that variables related by E are equal and that variables unrelated by E
are not equal. The original formula ϕ is (T1 ∪T2)-satisfiable iff there exists an
equivalence relation E of V such that:

• ϕ1 ∧A(V ,E) is T1-satisfiable, and

• ϕ2 ∧A(V ,E) is T2-satisfiable

Exchanging interface equalities: Step 2 of the Nelson-Oppen procedure asks
decision procedures P1 and P2 for theories T1 and T2, respectively, to propagate
information to each other in the form of entailed equalities over shared variables.
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Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants
e1, e2, e3, e4, e5, a. Note: We can view variables as being existentially quantified or as
free constants, i.e., constant symbols not in the theory signature.

L1 L2
f (e1) = a e2 − e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 > a + 2
f (e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 ⊧UF e2 = e3 L2 ⊧LRA e1 = e4

L1 ⊧UF a = e5

Third step: check for satisfiability locally

L1 /⊧UF �
L2 ⊧LRA � Report unsatisfiable
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪TUF (TLIA, linear integer
arithmetic):

1 ≤ x ≤ 2
f (1) = a
f (2) = f (1) + 3

a = b + 2

First step: purify literals so that each belongs to a single theory

f (1) = a Ô⇒ f (e1) = a
e1 = 1

f (2) = f (1) + 3 Ô⇒ e2 = 2
f (e2) = e3
f (e1) = e4

e3 = e4 + 3
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
x , e1, a,b, e2, e3, e4.

L1 L2
1 ≤ x f (e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3
a = b + 2 f (e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

No more entailed equalities, but L1 ⊧LIA x = e1 ∨ x = e2 Consider each case of
x = e1 ∨ x = e2 separately. Note: For convex theories, entailed clauses consisting of
equality literals over shared constants are unit. For non-convex theories, case-splitting
is necessary. Case 1) x = e1 L2 ⊧UF a = b, which entails � when sent to
L1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
x , e1, a,b, e2, e3, e4

L1 L2
1 ≤ x f (e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3
a = b + 2 f (e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

Case 2) x = e2 L2 ⊧UF e3 = b, which entails � when sent to L1
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Non-convex case: Disjunctions of equalities

A procedure for a non-convex theory Ti must be able to find disjunctions of equalities
that are entailed by a Σi -formula ϕi . Disjunctions should be as small as possible since
the Nelson-Oppen method must branch on each disjunct.

A disjunction is minimal if it is implied by ϕi and each smaller disjunciton is not
implied by ϕi .

A simple procedure to find a minimal disjuction:

• First, consider the disjunction of all equalities at once.

• If it is not implied, then no subset is implied either, so we are done.

• Otherwise, drop each equality in turn: if the remaining disjunction is still implied
by ϕi , continue with this smaller disjunction; otherwise, restore the equality and
continue.

• When all equalities have been considered, the resulting disjunction is minimal.
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The Nelson-Oppen Method

• For i = 1,2, let Ti be a first-order theory of signature Σi (which includes =)

• Let T = T1 ∪T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free) (Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals

December 4, 2023 CS257 17 / 28



The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over C such
that

c = d ∈ A or c ≠ d ∈ A for all c ,d ∈ C

2. If Li ∪A is Ti -unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat
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Correctness of the NO Method

Proposition (Termination) The method is terminating. (Trivially, because there is only a finite

number of arrangements to guess.)

Proposition (Refutation Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪T2)-unsatisfiable. (Because unsatisfiability in (T1 ∪T2) is

preserved.)

Proposition (Solution Soundness) If Σ1 ∩Σ2 = ∅ and T1 and T2 are stably infinite,
when the method returns sat for some arrangement, the input is (T1 ∪T2)-is
satisfiable. (Because satisfiability in (T1 ∪T2) is preserved for stably infinite theories.)

Proposition (Completeness) For every arrangement, there is a terminating and
progressive strategy to return sat or unsat. (Because the method is terminating - above - and

never gets stuck on its way to deriving sat or unsat.)
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Stably Infinite Theories

Def. Let Σ be a signature, let S ⊂ ΣS be a set of sorts, and let T be a Σ-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free
Σ-formula ϕ, there exists a T-interpretation I satisfying ϕ, such that dom(σ) is infinite
for each sort σ ∈ S . Nelson-Oppen requires that T1 and T2, which are to be combined,
are stably-infinite over (at least) the set of common sorts ΣS

1 ∩ΣS
2 .

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear orders (over rationals or

reals), theory of lists (of integers))

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals L ⊧T s1 = t1 ∨⋯ ∨ sn = tn Ô⇒
L ⊧T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
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Stably Infinite Theories

Def. Let Σ be a signature, let S ⊂ ΣS be a set of sorts, and let T be a Σ-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free
Σ-formula ϕ, there exists a T-interpretation I satisfying ϕ, such that dom(σ) is infinite
for each sort σ ∈ S .

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite
theories
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Stably Infinite Theories: Example

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence,
this theory cannot be stably-infinite.

Example: Consider Tarray where both indices and elements are of the same sort bv, so
that the sorts of Tarray are {array, bv}, and a theory Tbv that requires the sort bv to
be interpreted as bit-vectors of size 1.

• Both theories are decidable and we would like to decide the combination theory in
a Nelson-Oppen-like framework.

• Let a1, ..., a5 be array variables and consider the following constraints: ai ≠ aj , for
1 ≤ i < j ≤ 5.

• These constraints are entirely within Tarray . Array theory solver is given all
constraints and the bit-vector theory solver is given none.

• Problem: Array solver tells us these constraints are SAT, but there are only four
possible different arrays with elements and indices over bit-vectors of size 1.
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SMT Solving with Multiple Theories

Let T1, . . . ,Tn be theories with respective solvers S1, . . . ,Sn

How can we integrate all of them cooperatively into a single SMT solver for
T = T1 ∪⋯ ∪Tn?

Quick Solution:

1. Combine S1, . . . ,Sn with Nelson-Oppen into a theory solver for T

2. Build a DPLL(T ) solver as usual

Better Solution:

1. Extend DPLL(T ) to DPLL(T1, . . . ,Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . ,Xn) level

3. Build a DPLL(T1, . . . ,Tn) solver
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Modeling DPLL(T1, . . . ,Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1,2, with Σ1 ∩Σ2 = ∅

• Let C be a set of free constants

• Assume wlog that each input literal has signature (Σ1 ∪ C) or (Σ2 ∪ C) (no
mixed literals)

• Let M∣i def= {(Σi ∪ C)-literals of M and their complement}

• Let I(M) def= {c = d ∣ c ,d occur in C , M∣1 and M∣2} ∪
{c ≠ d ∣ c ,d occur in C , M∣1 and M∣2}

(interface literals)
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Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lits(F)∪I(M) l ,¬l ∉M

M ∶=M ● l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lits(F)∪I(M) i ∈ {1,2} M ⊧Ti

l l ,¬l ∉M
M ∶=M l

Only change: propagate interface equalities as well, but reason locally in each Ti
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Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈M l1, . . . , ln ⊧Ti
� i ∈ {1,2}

C ∶= ¬l1 ∨⋯ ∨ ¬ln
T -Explain

C = l ∨D ¬l1, . . . ,¬ln ⊧Ti
¬l i ∈ {1,2} ¬l1, . . . ,¬ln ≺M ¬l

C ∶= l1 ∨⋯ ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

⊧Ti
l1 ∨⋯ ∨ ln l1, . . . , ln ∈M∣i ∪ I(M) i ∈ {1,2}

F ∶= F ∪ {l1 ∨⋯ ∨ ln}
New rule: for entailed disjunctions of interface literals
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Example — Convex Theories

F ∶=

0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = a ∧

1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (x) = e2 ∧

2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (y) = e3 ∧

3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e4) = e5 ∧

4
³¹¹·¹¹µ
x = y ∧

e2 − e3 = e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5

∧ e4 = 0
´¹¹¹¹¹¸¹¹¹¹¹¶

6

∧ e5 > a + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7

e2 = e3
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

8

e1 = e4
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

9

a = e5
´¹¹¹¹¹¸¹¹¹¹¹¶

10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 ⊧UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 ⊧LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 ⊧UF 10)
0 1 2 3 4 5 6 7 8 9 10 F ¬7 ∨ ¬10 by T -Conflict (7, 10 ⊧LRA �)

Fail by Fail
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Example — Non-convex Theories

F ∶=

0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = a ∧

1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (x) = b ∧

2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e2) = e3 ∧

3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = e4 ∧
1 ≤ x
´¹¹¸¹¹¶

4

∧ x ≤ 2
´¹¹¸¹¹¶

5

∧ e1 = 1
´¹¹¹¹¹¸¹¹¹¹¹¶

6

∧ a = b + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7

∧ e2 = 2
´¹¹¹¹¹¸¹¹¹¹¹¶

8

∧ e3 = e4 + 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

9

a = e4
´¹¹¹¹¹¸¹¹¹¹¹¶

10

x = e1
´¹¹¹¹¹¸¹¹¹¹¹¶

11

x = e2
´¹¹¹¹¹¸¹¹¹¹¹¶

12

a = b
´¹¹¸¹¹¶
13

M F C rule
F no

0⋯ 9 F no by Propagate+
0⋯ 9 10 F no by T -Propagate (0, 3 ⊧UF 10)
0⋯ 9 10 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by I-Learn (⊧LIA ¬4 ∨ ¬5 ∨ 11 ∨ 12)

0⋯ 9 10 ● 11 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Decide
0⋯ 9 10 ● 11 13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 ⊧UF 13)
0⋯ 9 10 ● 11 13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 ¬7 ∨ ¬13 by T -Conflict (7, 13 ⊧UF �)

0⋯ 9 10 ¬13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Backjump
0⋯ 9 10 ¬13 ¬11 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, ¬13 ⊧UF ¬11)

0⋯ 9 10 ¬13 ¬11 12 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)

Fail ⋯ ⋯ by Fail
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