CS257: Introduction to Automated Reasoning
Theory Combination

Stanford ® TR

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a=b+2 A A=write(B,a+1,4) A
(read(A,b+3)=2v f(a-1)#f(b+1))

Solving that formula requires reasoning over

e the theory of linear arithmetic (Tpa)
e the theory of arrays (Ta)
e the theory of uninterpreted functions (Tyr)

Question: Given solvers for each theory, can we combine them modularly into one for
TLA U TA U TUF?

Under certain conditions, we can do it with the Nelson-Oppen combination method

December 4, 2023 CS257 1/28

Reminder: First-Order Logic Symbols

The syntax of many-sorted FOL is defined with respect to a signature, ¥ := {¥° ¥F},
where:

e Y° is a set of sorts: e.g., Real, Int, Set

e ¥/ is a set of function symbols: e.g., €+, 2, <, 0

In addition to the function symbols, the alphabet of FOL also contains logical symbols:

Parentheses: “(", ")”

Propositional connectives: —, —
e Variables: vq, vo, ...
Quantifiers: V

Equality symbol: for each sort o in ¥°, there may be an optional symbol =,.

December 4, 2023 CS257 2 /28

Reminder: First-Order Logic Signatures

The syntax of many-sorted FOL is defined with respect to a signature, ¥ := {¥° ¥F},
where:

e Y° is a set of sorts: e.g., Real, Int, Set
e ¥/ is a set of function symbols: e.g., €+, 2, <, 0
For each variable v, we associate a sort sort(v) € ¥°.

For each function symbol f € ¥ we associate an arity n, which is a natural number
denoting the number of arguments f takes, and an n + 1-tuple of sorts:
sort(f) =(01,...,0n,0n11). We say f returns op.1.

Example: The function symbol + has arity 2, and sort(+) = (Real, Real, Real) in the
intended translation.

December 4, 2023 CS257 3/28

Reminder: First-Order Logic Signatures
We assume that ¥° always includes a distinguished sort Bool and that £/ contains
distinguished symbols {T, L}.
We assume sort(L) = sort(T) = (Bool)
There are two special kinds of functions, constant symbols and predicate symbols:
e Constant symbols are O-arity function symbols: e.g., L, T, 7, John, 0

e A predicate symbol is a function symbol that returns Bool

- Each equality symbol =, is a predicate symbol with arity 2 and
sort(=4) = (o, o, Bool).

Example: sort(e) = (Set, Set, Bool) in the intended translation.

To specify which first-order language we have before us, we need to:
e say whether the equality symbol is present;

e define the signature.

December 4, 2023 CS257 4/ 28

Reminder: First-Order Logic Semantics

Formally, the truth of a ¥-formula is determined by an interpretation / of ¥
consisting of the following:

1. For each sort o € ¥°, a nonempty set called the domain of o, written dom(o)
- We always assume dom(Bool) = {T,F}
2. A mapping from each n-ary function symbol f in £F of sort
sort(f) ={(01,...,0n,0n+1) to f!, an n-ary function from dom(cy) x --- x dom(c,,)
to dom(opi1)
- We always assume 1'=F, 1'=T, and :(’, ab=Tiffa=b

/

3. A mapping from each variable v of sort ¢ to its interpretation v', an element of

dom(o)

(1) and (2) without (3) is called a structure or a model.

December 4, 2023 CS257 5/28

First-order theories and their combination
A theory T is a pair (X,S), where:

e 2 is a signature, which we recall from Lecture 4 consists of a set Y° of sorts and
a set ©F of function symbols.

e Sis a class (in the sense of set theory) of ¥-structures.

We limit interpretations of X-formulas to those that have their structures in S.

Theory combination: Let Ty = (X1,5;1) and T, = (X2,5,) be two theories. The
combination of Ty and T is the theory Ty @ Tp = (X,S) where ¥ =¥;U¥5 and S =
{S-structures | | 19 ¢ S; and I*22 ¢ S,}.

Above, I is an interpretation, and /=Y denotes the interpretation obtained by

interpreting symbols in X and variables in U. Structures do not interpret variables, so
U is empty above.

December 4, 2023 CS257 6 /28

Theory Combination: Preliminaries

First-order theories without the equality symbol are rarely considered. We will follow
this convention.

Convex theory: A Y-theory T is convex if for every conjunctive X-formula ¢:

(¢ > VI, x;i = y;) is T-valid for some finite n>1 —
(¢ — x; = y;) is T-valid for some i€ 1,....n,

where x;, y;, for i € 1,...,n, are some variables.

December 4, 2023 CS257 7 /28

Theory Combination: Preliminaries

Example (convex): Linear real arithmetic is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x<3Ax>3->x=3

or infinitely large, and hence it implies an infinite disjunction. All three cases fit the
definition of convexity.

Example (non-convex): Linear integer arithmetic is non-convex. For example, while
x1=1Ax0=2A1<x3Ax3<2— (x3=1Vx3=2) holds, neither
x1=1Ax0=2A1<x3AXx3<2—>x3=1, nor
x1=1Ax=2A1<x3Ax3<2 - x3=2 holds.

Many theories used in practice are nonconvex, which makes them computationally
harder to combine with other theories due to case splits, which we'll see.

December 4, 2023 CS257 8 /28

Nelson-Oppen: Step 1, Purification

Given decision procedures for the satisfiability of formulas in theories T; and T,, we
are interested in constructing a decision procedure for the satisfiability of 77 & To.

Given a conjunctive formula ¢ (i.e., a conjunction of literals) over the combined
signature X1 U X5, the first step is to purify ¢ by constructing and equisatisfiable set of
conjunctive formulas ¢1 U ¢o such that each ¢; consists of only X ;-formulas.

Purification:

Given a conjunctive formula, ¢:

1. Find a pure sub-term (i.e., a ¥;-sub-term for some i), t.

2. Replace t with a fresh variable v, and add the term v =t to the conjunctive
formula.

3. Repeat steps 1 and 2 until all atomic formulas are pure.

4. Split the resulting conjunctive formula into two formulas ¢1 U ¢, which are linked
by a set of shared variables.

December 4, 2023 CS257 9 /28

Motivating Example (Convex Case)

Consider the following set of literals over Tyra U Tyr
(TrraA, linear real arithmetic):

F(F)-f(y)) = a
f(0) > a+2
x =y

First step: purify literals so that each belongs to a single theory

f(f(x)-f(y))=a — f(a)=a — f(ea)=a
er=f(x)-f(y) e1=e-e3
eg=f(X)
e =f(y)

December 4, 2023 10 / 28

£iNn\ <« ~ . N L [/AQS\252"3 L Vo N

Nelson-Oppen: Step 2, Exchange Interface Equalities

Formulas ¢1 and ¢», which were produces through purification are linked by a set of
shared variables. Let V = shared(¢1, ¢2) be these shared variables.

Let E be an equivalence relation over V. The arrangement A(V/, E) of V induced by E

is the formula:
AWV.E): AN u=va AN u=v,
u,veV.uEv u,veV .-uEv
which asserts that variables related by E are equal and that variables unrelated by E
are not equal. The original formula ¢ is (T; U Ty)-satisfiable iff there exists an
equivalence relation E of V such that:

e $»1 AA(V,E) is Ty-satisfiable, and
o ¢ AA(V,E) is Ty-satisfiable

Exchanging interface equalities: Step 2 of the Nelson-Oppen procedure asks
decision procedures P; and P, for theories T1 and T, respectively, to propagate
information to each other in the form of entailed equalities over shared variables.

December 4, 2023 CS257 11 /28

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants
e1, e, e3,6e4,65,a. Note: We can view variables as being existentially quantified or as
free constants, i.e., constant symbols not in the theory signature.

Ly Lo
f(e1) = a e—e=e
f(X)ZEQ e4:0
f(y) =es es >a+2
f(es) = es e = e3

X =Yy a=es
€1 = €4
LiFur e =e3 Ly FLra €1 =&

Ly Eup a= 65
Third step: check for satisfiability locally
Ll #UF 1

Ly Frra L

December 4, 2023 CS257 12 /28

Report unsatisfiable

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over Tyja U Typ (Tria, linear integer

arithmetic):
1< x <2
f(1) = a
f(2) = f(1)+3
a = b+2

First step: purify literals so that each belongs to a single theory

f(l)y=a = f(el) =a

December 4, 2023 CS257 g 13 /28

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
X, €1, 4, bv €2, €3, €4.

L

€4

Ly Ly
1<x f(er1) =a
x <2 f(x)=b
e1 =1 f(e) = e3
a=b+2 f(el) = e
62=2 X =€
e3 =e;+3

X
s

No more entailed equalities, but L1 E;ja x =e1 Vx=¢e Consider each case of

X =e1Vx=e separately. Note: For convex theories, entailed clauses consisting of
equality literals over shared constants are unit. For non-convex theories, case-splitting
is necessary. Case 1) x = ¢ L> Eyr a = b, which entails 1 when sent to
Ly

December 4, 2023 CS257 14 /28

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
X, €1, a4, b’ €2, €3, €4

Ly Ly

1<x f(er1) =a
x<2 f(x)=»b
61=1 f(62)=e3
a=b+2 fler) = e
e =2 X = e
e3 =e;+3

a = €4

X =e

Case 2) x = & L> Eur e3 = b, which entails 1 when sent to [

December 4, 2023 CS257 15 /28

Non-convex case: Disjunctions of equalities

A procedure for a non-convex theory T; must be able to find disjunctions of equalities
that are entailed by a X ;-formula ¢;. Disjunctions should be as small as possible since
the Nelson-Oppen method must branch on each disjunct.

A disjunction is minimal if it is implied by ¢; and each smaller disjunciton is not
implied by ¢;.

A simple procedure to find a minimal disjuction:

e First, consider the disjunction of all equalities at once.

e If it is not implied, then no subset is implied either, so we are done.

e Otherwise, drop each equality in turn: if the remaining disjunction is still implied
by ¢;, continue with this smaller disjunction; otherwise, restore the equality and
continue.

e When all equalities have been considered, the resulting disjunction is minimal.

December 4, 2023 CS257 16 / 28

The Nelson-Oppen Method

e For /=12, let T; be a first-order theory of signature X; (which includes =)
elet T=T1UT,

e Let C be a finite set of free constants (ie., notin ¥, U¥,)

We consider only input problems of the form
L1 @} L2

where each L; is a finite set of ground (i.e., variable-free) (%; U C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (x; U C)-literals

December 4, 2023 CS257 17 /28

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version:
Input: L1 ULy with L; finite set of ground (%; U C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over C such
that

c=deA or cxdeA forall c,deC

2. If L;uAis T;-unsatisfiable for /=1 or /=2, return unsat

3. Otherwise, return sat

December 4, 2023 CS257 18 /28

Correctness of the NO Method

Proposition (Termination) The method is terminating. (Trivially, because there is only a finite

number of arrangements to guess.)

Proposition (Refutation Soundness) If the method returns unsat for every
arrangement, the input is (77 U T»)-unsatisfiable. (Because unsatisfiability in (77U T2) is

preserved.)

Proposition (Solution Soundness) If >1n¥, =2 and T; and T, are stably infinite,
when the method returns sat for some arrangement, the inputis (71U T5)-is
satisfiable. (Because satisfiability in (77 U T,) is preserved for stably infinite theories.)

Proposition (Completeness) For every arrangement, there is a terminating and
progressive strategy to return sat or unsat. (Because the method is terminating - above - and

never gets stuck on its way to deriving sat or unsat.)

December 4, 2023 CS257 19 /28

Stably Infinite Theories

Def. Let ¥ be a signature, let S c ¥° be a set of sorts, and let T be a X-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free

Y -formula ¢, there exists a T-interpretation / satisfying ¢, such that dom(o) is infinite
for each sort o € S. Nelson-Oppen requires that T7 and T, which are to be combined,
are stably-infinite over (at least) the set of common sorts ¥ N ¥5.

Many interesting theories are stably infinite:

e Theories of an infinite structure (e.g., integer arithmetic)

e Complete theories with an infinite model (e.g., theory of dense linear orders (over rationals or
reals), theory of lists (of integers))

e Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals L=y s =t;v---vs,=t, =
L =1 s; = t; for some |

Note: With convex theories, arrangements do not need to be guessed—they
December 4,2883be computed by (theory) propagation C€S257 20 /28

Stably Infinite Theories

Def. Let ¥ be a signature, let S ¢ ¥° be a set of sorts, and let T be a X-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free

Y -formula ¢, there exists a T-interpretation / satisfying ¢, such that dom(o) is infinite
for each sort o € S.

Other interesting theories are not stably infinite:

o Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
e Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

e Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite
theories

December 4, 2023 CS257 21 /28

Stably Infinite Theories: Example

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence,
this theory cannot be stably-infinite.

Example: Consider T,.,, where both indices and elements are of the same sort bv, so
that the sorts of T, are {array, bv}, and a theory T}, that requires the sort bv to
be interpreted as bit-vectors of size 1.

e Both theories are decidable and we would like to decide the combination theory in
a Nelson-Oppen-like framework.

e Let ay,...,a5 be array variables and consider the following constraints: a; # a;, for
1<i<j<h.

e These constraints are entirely within T,.,,. Array theory solver is given all
constraints and the bit-vector theory solver is given none.

e Problem: Array solver tells us these constraints are SAT, but there are only four
possible different arrays with elements and indices over bit-vectors of size 1.

December 4, 2023 CS257 22 /28

SMT Solving with Multiple Theories

How can we integrate all of them cooperatively into a single SMT solver for
T=Tiu-uT,?

Quick Solution:

1. Combine 5i,...,S, with Nelson-Oppen into a theory solver for T
2. Build a DPLL(T) solver as usual

Better Solution:

1. Extend DPLL(T) to DPLL(Ty,..., Ty)
2. Lift Nelson-Oppen to the DPLL(X, ..., X,) level
3. Build a DPLL(T,..., T,) solver

December 4, 2023 CS257 23 /28

Modeling DPLL(T3, ..., T,) Abstractly

e Let n=2, for simplicity
o Let T; be of signature X; for /=12, with X1nY,=9¢

o Let C be a set of free constants

Assume wlog that each input literal has signature (X;UC) or (XU C) (no
mixed literals)

Let M]|; d:ef{(Z,- u C)-literals of M and their complement}

Let I(M) dgf{c =d|c,d occurin C, M|y and M5} U
{c+d|c,d occurin C, M|y and M|}

(interface literals)

December 4, 2023 CS257 24 /28

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

leLits(F)ul(M) /,-/¢M
M:=Me/

Decide

Only change: decide on interface equalities as well

leLits(F)UI(M) ie{1,2} Mer [[,-l¢M
M= M/

T-Propagate

Only change: propagate interface equalities as well, but reason locally in each T;

December 4, 2023 CS257 25 /28

Abstract DPLL Modulo Multiple Theories
T-Conflict
C=no h,....lheM h,....lher L ic{l,2}

Ci==h Vv,

T-Explain

C=I/vD _‘Ila"-7_‘/n':T,-_‘/ 16{172} —|/]_,...,—|/n<|\/|—|/
Ci=hv-vi,vD

Only change: reason locally in each T;

I-Learn
Er.hvevil, h,....lheM[jul(M) ie{l,2}
Fi=Fu{hv-Vvi}

New rule: for entailed disjunctions of interface literals

December 4, 2023 CS257 26 /28

Example — Convex Theories

0

1

2 3

—_—— —t— —— ——

—_——
F:= f(eg)=anf(x)=e Af(y)=e3 Af(eg)=e5 A x=y A
e—e3=e; ANe=0Ae>a+2
NN NG
5 6 7
ey=e3 e =e a=eg
Cem e e
8 9 10
M F C rule
F no
01234567 F no by Propagate*
012345678 F no by T-Propagate (1, 2, 4 =yr 8)
0123456789 F no by T-Propagate (5, 6, 8 =1
012345678910 FE no by T-Propagate (0, 3, 9 l:UFA10
012345678910 F -7v-10 by T-Conflict (7, 10 ELrA L)
Fail by Fail
December 4, 2023

CS257

27 /28

Example — Non-convex Theories

0 1 2 3
F:= f(ef)=aAf(x)=bAf(e)=e A f(e)=en
1<xAx<2Ae=1Aa=b+2Ae=2Ae=¢g+3
4 5 6 7 8 9
a=e x=e x=e a=b
—— —— —— ——
10 11 12 13
M F C rule
F no
F no by Prcﬂ)agateJr
F no by T-Propagate (0, 3 E(y 10}
F, -4v-5v11v12 no by I-Learn (Fp1,1A ﬂ4vﬁ§\/1 v 12)
F, -4v-5v11v12 no by Decide
F, -4v-5v11v12 no by T-Propagate (0, 1, 11 Eyp 13)
F) J4v_BvIIvI2 —7v-13 by T-Confiict (7, 13 Pur 1)
F, -4v-5v1lvi2 no by Backjump
F, -4v-5v11v12 no by T-Propagate (0, 1, =13 =y —11)
0- F, -4v-5v1lvi12 no by Propagate
gexerc_lse)
y Fail
December 4, 2023 CS257

28 /28

