CS257: Introduction to Automated Reasoning Theory Combination

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

$$
\begin{aligned}
& a=b+2 \wedge A=\operatorname{write}(B, a+1,4) \wedge \\
& (\operatorname{read}(A, b+3)=2 \vee f(a-1) \neq f(b+1))
\end{aligned}
$$

Solving that formula requires reasoning over

- the theory of linear arithmetic (T_{LA})
- the theory of arrays (T_{A})
- the theory of uninterpreted functions (T_{UF})

Question: Given solvers for each theory, can we combine them modularly into one for $T_{\mathrm{LA}} \cup T_{\mathrm{A}} \cup T_{\mathrm{UF}}$?

Under certain conditions, we can do it with the Nelson-Oppen combination method

Reminder: First-Order Logic Symbols

The syntax of many-sorted FOL is defined with respect to a signature, $\Sigma:=\left\{\Sigma^{S}, \Sigma^{F}\right\}$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set
- Σ^{F} is a set of function symbols: e.g., $\epsilon,+,+{ }_{[2]},<, \ell$

In addition to the function symbols, the alphabet of FOL also contains logical symbols:

- Parentheses: "(", ")"
- Propositional connectives: \rightarrow, \neg
- Variables: v_{1}, v_{2}, \ldots
- Quantifiers: \forall
- Equality symbol: for each sort σ in Σ^{S}, there may be an optional symbol $=\sigma$.

Reminder: First-Order Logic Signatures

The syntax of many-sorted FOL is defined with respect to a signature, $\Sigma:=\left\{\Sigma^{S}, \Sigma^{F}\right\}$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set
- Σ^{F} is a set of function symbols: e.g., $\epsilon,+,+{ }_{[2]},<, \ell$

For each variable v, we associate a sort $\operatorname{sort}(v) \in \Sigma^{S}$.
For each function symbol $f \in \Sigma^{F}$ we associate an arity n, which is a natural number denoting the number of arguments f takes, and an $n+1$-tuple of sorts: $\operatorname{sort}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$. We say f returns σ_{n+1}.
Example: The function symbol + has arity 2 , and $\operatorname{sort}(+)=\langle$ Real, Real, Real \rangle in the intended translation.

Reminder: First-Order Logic Signatures

We assume that Σ^{S} always includes a distinguished sort Bool and that Σ^{F} contains distinguished symbols $\{T, \perp\}$.

We assume sort $(\perp)=\operatorname{sort}(T)=\langle$ Bool \rangle
There are two special kinds of functions, constant symbols and predicate symbols:

- Constant symbols are 0 -arity function symbols: e.g., \perp, T, π, John, 0
- A predicate symbol is a function symbol that returns Bool
- Each equality symbol $={ }_{\sigma}$ is a predicate symbol with arity 2 and

$$
\operatorname{sort}\left(={ }_{\sigma}\right)=\langle\sigma, \sigma, \text { Bool }\rangle .
$$

Example: $\operatorname{sort}(\epsilon)=\langle$ Set, Set, Bool \rangle in the intended translation.
To specify which first-order language we have before us, we need to:

- say whether the equality symbol is present;
- define the signature.

Reminder: First-Order Logic Semantics

Formally, the truth of a Σ-formula is determined by an interpretation / of Σ consisting of the following:

1. For each sort $\sigma \in \Sigma^{S}$, a nonempty set called the domain of σ, written $\operatorname{dom}(\sigma)$

- We always assume $\operatorname{dom}($ Bool $)=\{\mathrm{T}, \mathrm{F}\}$

2. A mapping from each n-ary function symbol f in Σ^{F} of sort $\operatorname{sort}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$ to f^{\prime}, an n-ary function from $\operatorname{dom}\left(\sigma_{1}\right) \times \cdots \times \operatorname{dom}\left(\sigma_{n}\right)$ to $\operatorname{dom}\left(\sigma_{n+1}\right)$

- We always assume $\perp^{\prime}=\mathrm{F}, \mathrm{T}^{l}=\mathrm{T}$, and $=_{\sigma}^{l} a b=\mathrm{T}$ iff $a=b$

3. A mapping from each variable v of sort σ to its interpretation v^{\prime}, an element of $\operatorname{dom}(\sigma)$
(1) and (2) without (3) is called a structure or a model.

First-order theories and their combination

A theory T is a pair (Σ, S), where:

- Σ is a signature, which we recall from Lecture 4 consists of a set Σ^{S} of sorts and a set Σ^{F} of function symbols.
- S is a class (in the sense of set theory) of Σ-structures.

We limit interpretations of Σ-formulas to those that have their structures in S.
Theory combination: Let $T_{1}=\left(\Sigma_{1}, S_{1}\right)$ and $T_{2}=\left(\Sigma_{2}, S_{2}\right)$ be two theories. The combination of T_{1} and T_{2} is the theory $T_{1} \oplus T_{2}=(\Sigma, S)$ where $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ and $S=$ $\left\{\Sigma\right.$-structures $I \mid I^{\Sigma_{1}, \varnothing} \in S_{1}$ and $\left.I^{\Sigma_{2}, \varnothing} \in S_{2}\right\}$.
Above, I is an interpretation, and $I^{\Sigma, U}$ denotes the interpretation obtained by interpreting symbols in Σ and variables in U. Structures do not interpret variables, so U is empty above.

Theory Combination: Preliminaries

First-order theories without the equality symbol are rarely considered. We will follow this convention.

Convex theory: A Σ-theory T is convex if for every conjunctive Σ-formula ϕ :
$\left(\phi \rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}\right)$ is T-valid for some finite $n>1 \rightarrow$ $\left(\phi \rightarrow x_{i}=y_{i}\right)$ is T-valid for some $i \in 1, \ldots, n$, where x_{i}, y_{i}, for $i \in 1, \ldots, n$, are some variables.

Theory Combination: Preliminaries

Example (convex): Linear real arithmetic is convex. A conjunction of linear arithmetic predicates defines a set of values which can be empty, a singleton, as in
$x \leq 3 \wedge x \geq 3 \rightarrow x=3$
or infinitely large, and hence it implies an infinite disjunction. All three cases fit the definition of convexity.

Example (non-convex): Linear integer arithmetic is non-convex. For example, while

$$
\begin{aligned}
& x_{1}=1 \wedge x_{2}=2 \wedge 1 \leq x_{3} \wedge x_{3} \leq 2 \rightarrow\left(x_{3}=1 \vee x_{3}=2\right) \text { holds, neither } \\
& x_{1}=1 \wedge x_{2}=2 \wedge 1 \leq x_{3} \wedge x_{3} \leq 2 \rightarrow x_{3}=1, \text { nor } \\
& x_{1}=1 \wedge x_{2}=2 \wedge 1 \leq x_{3} \wedge x_{3} \leq 2 \rightarrow x_{3}=2 \text { holds. }
\end{aligned}
$$

Many theories used in practice are nonconvex, which makes them computationally harder to combine with other theories due to case splits, which we'll see.

Nelson-Oppen: Step 1, Purification

Given decision procedures for the satisfiability of formulas in theories T_{1} and T_{2}, we are interested in constructing a decision procedure for the satisfiability of $T_{1} \oplus T_{2}$.

Given a conjunctive formula ϕ (i.e., a conjunction of literals) over the combined signature $\Sigma_{1} \cup \Sigma_{2}$, the first step is to purify ϕ by constructing and equisatisfiable set of conjunctive formulas $\phi_{1} \cup \phi_{2}$ such that each ϕ_{i} consists of only Σ_{i}-formulas.

Purification:

Given a conjunctive formula, ϕ :

1. Find a pure sub-term (i.e., a Σ_{i}-sub-term for some i), t.
2. Replace t with a fresh variable v, and add the term $v=t$ to the conjunctive formula.
3. Repeat steps 1 and 2 until all atomic formulas are pure.
4. Split the resulting conjunctive formula into two formulas $\phi_{1} \cup \phi_{2}$, which are linked by a set of shared variables.

Motivating Example (Convex Case)

Consider the following set of literals over $T_{\text {LRA }} \cup T_{\text {UF }}$
($T_{\text {LRA }}$, linear real arithmetic):

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & >a+2 \\
x & =y
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
\begin{aligned}
f(f(x)-f(y))=a \quad \Longrightarrow f\left(e_{1}\right) & =a \\
e_{1} & =f(x)-f(y) \quad \Longrightarrow f\left(e_{1}\right)
\end{aligned}=a, ~ \begin{aligned}
e_{1} & =e_{2}-e_{3} \\
e_{2} & =f(x) \\
e_{3} & =f(y)
\end{aligned}
$$

Nelson-Oppen: Step 2, Exchange Interface Equalities

Formulas ϕ_{1} and ϕ_{2}, which were produces through purification are linked by a set of shared variables. Let $\mathrm{V}=\operatorname{shared}\left(\phi_{1}, \phi_{2}\right)$ be these shared variables.
Let E be an equivalence relation over V . The arrangement $A(V, E)$ of V induced by E is the formula:

$$
A(V, E): \bigwedge_{u, v \in V . u E v} u=v \wedge \bigwedge_{u, v \in V, \neg u E v} u \neq v,
$$

which asserts that variables related by E are equal and that variables unrelated by E are not equal. The original formula ϕ is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E of V such that:

- $\phi_{1} \wedge A(V, E)$ is T_{1}-satisfiable, and
- $\phi_{2} \wedge A(V, E)$ is T_{2}-satisfiable

Exchanging interface equalities: Step 2 of the Nelson-Oppen procedure asks decision procedures P_{1} and P_{2} for theories T_{1} and T_{2}, respectively, to propagate information to each other in the form of entailed equalities over shared variables.

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$. Note: We can view variables as being existentially quantified or as free constants, i.e., constant symbols not in the theory signature.

L_{1}	L_{2}
$f\left(e_{1}\right)=a$	$e_{2}-e_{3}=e_{1}$
$f(x)=e_{2}$	$e_{4}=0$
$f(y)=e_{3}$	$e_{5}>a+2$
$f\left(e_{4}\right)=e_{5}$	$e_{2}=e_{3}$
$x=y$	$a=e_{5}$
$e_{1}=e_{4}$	

$$
\begin{aligned}
& L_{1} \models_{\mathrm{UF}} e_{2}=e_{3} \quad L_{2} \vDash_{\mathrm{LRA}} e_{1}=e_{4} \\
& L_{1} \vDash_{\mathrm{UF}} a=e_{5}
\end{aligned}
$$

Third step: check for satisfiability locally

$$
\begin{gathered}
L_{1} \not \vDash_{\mathrm{UF}} \perp \\
L_{2} \vDash_{\mathrm{LRA}} \perp
\end{gathered}
$$

Report unsatisfiable

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\text {LIA }} \cup T_{\text {UF }}$ ($T_{\text {LIA }}$, linear integer arithmetic):

$$
\begin{aligned}
1 \leq & x \leq 2 \\
f(1) & =a \\
f(2) & =f(1)+3 \\
a & =b+2
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
f(1)=a \underset{\text { CS257 }}{\Longrightarrow} f\left(e_{1}\right)=a
$$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$.

L_{1}	L_{2}	
1	$\leq x$	$f\left(e_{1}\right)=a$
x	≤ 2	$f(x)=b$
e_{1}	$=1$	$f\left(e_{2}\right)=e_{3}$
a	$=b+2$	$f\left(e_{1}\right)=e_{4}$
e_{2}	$=2$	$x=e_{1}$
e_{3}	$=e_{4}+3$	
a	$=e_{4}$	
x	$=e_{1}$	

No more entailed equalities, but $L_{1} \vDash_{\text {LIA }} x=e_{1} \vee x=e_{2} \quad$ Consider each case of $x=e_{1} \vee x=e_{2}$ separately. Note: For convex theories, entailed clauses consisting of equality literals over shared constants are unit. For non-convex theories, case-splitting is necessary. Case 1) $x=e_{1} \quad L_{2} \vDash_{\mathrm{UF}} a=b$, which entails \perp when sent to L_{1}

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}	
1	$\leq x$	$f\left(e_{1}\right)=a$
x	≤ 2	$f(x)=b$
e_{1}	$=1$	$f\left(e_{2}\right)=e_{3}$
a	$=b+2$	$f\left(e_{1}\right)=e_{4}$
e_{2}	$=2$	$x=e_{2}$
e_{3}	$=e_{4}+3$	
a	$=e_{4}$	
x	$=e_{2}$	

Case 2) $x=e_{2}$
$L_{2} \vDash_{\mathrm{UF}} e_{3}=b$, which entails \perp when sent to L_{1}

Non-convex case: Disjunctions of equalities

A procedure for a non-convex theory T_{i} must be able to find disjunctions of equalities that are entailed by a Σ_{i}-formula ϕ_{i}. Disjunctions should be as small as possible since the Nelson-Oppen method must branch on each disjunct.

A disjunction is minimal if it is implied by ϕ_{i} and each smaller disjunciton is not implied by ϕ_{i}.

A simple procedure to find a minimal disjuction:

- First, consider the disjunction of all equalities at once.
- If it is not implied, then no subset is implied either, so we are done.
- Otherwise, drop each equality in turn: if the remaining disjunction is still implied by ϕ_{i}, continue with this smaller disjunction; otherwise, restore the equality and continue.
- When all equalities have been considered, the resulting disjunction is minimal.

The Nelson-Oppen Method

- For $i=1,2$, let T_{i} be a first-order theory of signature Σ_{i} (which includes $=$)
- Let $T=T_{1} \cup T_{2}$
- Let C be a finite set of free constants (i.e., not in $\Sigma_{1} \cup \Sigma_{2}$)

We consider only input problems of the form

$$
L_{1} \cup L_{2}
$$

where each L_{i} is a finite set of ground (i.e., variable-free) $\left(\Sigma_{i} \cup C\right)$-literals

Note: Because of purification there is no loss of generality in considering only ground $\left(\Sigma_{i} \cup C\right)$-literals

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version:

Input: $L_{1} \cup L_{2}$ with L_{i} finite set of ground $\left(\Sigma_{i} \cup C\right)$-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over C such that

$$
c=d \in A \text { or } c \neq d \in A \text { for all } c, d \in C
$$

2. If $L_{i} \cup A$ is T_{i}-unsatisfiable for $i=1$ or $i=2$, return unsat
3. Otherwise, return sat

Correctness of the NO Method

Proposition (Termination) The method is terminating. (Trivially, because there is only a finite number of arrangements to guess.)

Proposition (Refutation Soundness) If the method returns unsat for every arrangement, the input is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable. (Because unsatisfiability in ($T_{1} \cup T_{2}$) is preserved.)

Proposition (Solution Soundness) If $\Sigma_{1} \cap \Sigma_{2}=\varnothing$ and T_{1} and T_{2} are stably infinite, when the method returns sat for some arrangement, the input is $\left(T_{1} \cup T_{2}\right)$-is satisfiable. (Because satisfiability in $\left(T_{1} \cup T_{2}\right)$ is preserved for stably infinite theories.)

Proposition (Completeness) For every arrangement, there is a terminating and progressive strategy to return sat or unsat. (Because the method is terminating - above - and never gets stuck on its way to deriving sat or unsat.)

Stably Infinite Theories

Def. Let Σ be a signature, let $S \subset \Sigma^{S}$ be a set of sorts, and let \mathbf{T} be a Σ-theory. We say that \mathbf{T} is stably-infinite with respect to S if for every \mathbf{T}-satisfiable quantifier-free Σ-formula ϕ, there exists a \mathbf{T}-interpretation I satisfying ϕ, such that $\operatorname{dom}(\sigma)$ is infinite for each sort $\sigma \in S$. Nelson-Oppen requires that T_{1} and T_{2}, which are to be combined, are stably-infinite over (at least) the set of common sorts $\Sigma_{1}^{S} \cap \Sigma_{2}^{S}$.

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders (over rationals or reals), theory of lists (of integers))
- Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory \mathbf{T} is convex iff, for any set L of literals $L \vDash_{T} s_{1}=t_{1} \vee \cdots \vee s_{n}=t_{n} \Longrightarrow$ $L \vDash_{T} s_{i}=t_{i}$ for some i

Note: With convex theories, arrangements do not need to be guessed-they

Stably Infinite Theories

Def. Let Σ be a signature, let $S \subset \Sigma^{S}$ be a set of sorts, and let \mathbf{T} be a Σ-theory. We say that \mathbf{T} is stably-infinite with respect to S if for every \mathbf{T}-satisfiable quantifier-free Σ-formula ϕ, there exists a \mathbf{T}-interpretation / satisfying ϕ, such that $\operatorname{dom}(\sigma)$ is infinite for each sort $\sigma \in S$.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)
- Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite theories

Stably Infinite Theories: Example

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this theory cannot be stably-infinite.

Example: Consider $T_{\text {array }}$ where both indices and elements are of the same sort bv, so that the sorts of $T_{\text {array }}$ are $\left\{\right.$ array, bv\}, and a theory $T_{b v}$ that requires the sort bv to be interpreted as bit-vectors of size 1 .

- Both theories are decidable and we would like to decide the combination theory in a Nelson-Oppen-like framework.
- Let a_{1}, \ldots, a_{5} be array variables and consider the following constraints: $a_{i} \neq a_{j}$, for $1 \leq i<j \leq 5$.
- These constraints are entirely within $T_{\text {array }}$. Array theory solver is given all constraints and the bit-vector theory solver is given none.
- Problem: Array solver tells us these constraints are SAT, but there are only four possible different arrays with elements and indices over bit-vectors of size 1.

SMT Solving with Multiple Theories

Let T_{1}, \ldots, T_{n} be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $T=T_{1} \cup \cdots \cup T_{n}$?

Quick Solution:

1. Combine S_{1}, \ldots, S_{n} with Nelson-Oppen into a theory solver for \mathbf{T}
2. Build a $\operatorname{DPLL}(T)$ solver as usual

Better Solution:

1. Extend $\operatorname{DPLL}(T)$ to $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$
2. Lift Nelson-Oppen to the $\operatorname{DPLL}\left(X_{1}, \ldots, X_{n}\right)$ level
3. Build a $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$ solver

Modeling $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$ Abstractly

- Let $n=2$, for simplicity
- Let T_{i} be of signature Σ_{i} for $i=1,2$, with $\Sigma_{1} \cap \Sigma_{2}=\varnothing$
- Let C be a set of free constants
- Assume wlog that each input literal has signature $\left(\Sigma_{1} \cup C\right)$ or $\left(\Sigma_{2} \cup C\right)$ (no mixed literals)
- Let $\left.\mathrm{M}\right|_{i} \stackrel{\text { def }}{=}\left\{\left(\Sigma_{i} \cup C\right)\right.$-literals of M and their complement $\}$
- Let $\mathrm{I}(\mathrm{M}) \stackrel{\text { def }}{=}\left\{c=d \mid c, d\right.$ occur in $C,\left.\mathrm{M}\right|_{1}$ and $\left.\left.\mathrm{M}\right|_{2}\right\} \cup$ $\left\{c \neq d \mid c, d\right.$ occur in $C,\left.M\right|_{1}$ and $\left.\left.\mathrm{M}\right|_{2}\right\}$
(interface literals)

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide $\frac{l \in \operatorname{Lits}(F) \cup I(M) \quad I, \neg / \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet I}$
Only change: decide on interface equalities as well
T-Propagate $\frac{l \in \operatorname{Lits}(\mathrm{~F}) \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\} \quad \mathrm{M} \vDash T_{i} l \quad l, \neg / \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} /}$
Only change: propagate interface equalities as well, but reason locally in each T_{i}

Abstract DPLL Modulo Multiple Theories

T-Conflict

$$
\frac{C=\text { no } \quad I_{1}, \ldots, I_{n} \in \mathrm{M} \quad I_{1}, \ldots, I_{n} \vDash T_{i} \perp \quad i \in\{1,2\}}{C:=\neg I_{1} \vee \cdots \vee \neg I_{n}}
$$

T-Explain

$$
\frac{\mathrm{C}=I \vee D \quad \neg I_{1}, \ldots, \neg I_{n} \vDash T_{i} \neg I \quad i \in\{1,2\} \quad \neg I_{1}, \ldots, \neg I_{n}<\mathrm{M} \neg I}{\mathrm{C}:=I_{1} \vee \cdots \vee I_{n} \vee D}
$$

Only change: reason locally in each T_{i}

I-Learn

$$
\frac{\vDash T_{i} I_{1} \vee \cdots \vee I_{n} \quad I_{1}, \ldots,\left.I_{n} \in \mathrm{M}\right|_{i} \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\}}{\mathrm{F}:=\mathrm{F} \cup\left\{I_{1} \vee \cdots \vee I_{n}\right\}}
$$

New rule: for entailed disjunctions of interface literals

Example - Convex Theories

$$
\begin{aligned}
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

M	F	C	rule
	F	no	
01234567	F	no	by Propagate ${ }^{+}$
012345678	F	no	by T-Propagate (1, 2, $4 \vDash_{\text {UF }} 8$)
0123456789	F	no	by T-Propagate ($5,6,8 \vDash_{\text {LRA }} 9$)
012345678910	F	no	by T-Propagate ($0,3,9 \vDash_{\text {UF }} 10$)
012345678910	F	$\neg 7 \vee \neg 10$	by T-Conflict ($7,10 \vDash_{\text {LRA }} \perp$)
Fail			by Fail

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)=a}^{0} \wedge \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)=e_{3}}^{2} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{2} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 . .9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	by T-Propagate ($0,3 \vDash \mathrm{UF} 10$)
0..9910	$F, \neg 4 \vee \neg 5 \vee 11 \vee 12$	no	by I-Learn (\vDash LIA $\neg 4 \vee \neg 5 \vee 11 \vee 12$)
$0 \ldots 910 \cdot 11$	$F^{\prime}, \neg 4 \vee \neg 5 \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \bullet 1113$	$F, \rightarrow 4 \vee \neg 5 \vee 11 \vee 12$	$\mathrm{n}^{\text {no }}$	by T-Propagate ($0,1,11 \vDash \mathrm{UF}$ 13)
$\begin{array}{r}0 . .910 ~ \\ 0 . . .91113 \\ \hline 13\end{array}$	$F, \neg 4 \vee \neg 5 \vee 11 \vee 12$ $F, \neg 4 \vee \neg 5 \vee 11 \vee 12$	$\neg 7 \mathrm{~V} \neg 13$	by T-Conflict $\left(7,13 \vDash \mathrm{UF}\right.$ ¢ b $^{\text {by }}$
$0 \ldots 910 \neg 13 \neg 11$	$F \cdot \stackrel{\text { F }}{ }, \neg 4 \vee \neg 5 \vee 11 \vee 12$	no	by T-Propagate $\left(0,1, \neg 13 \vDash_{\mathrm{UF}} \neg 11\right)$
$0 \cdots 910 \neg 13 \neg 1112$	$F, \neg 4 \vee \neg 5 \vee 11 \vee 12$	no	by Propagate (exercise)
Fail	\cdots	\cdots	by Fail

