CS257: Introduction to Automated Reasoning Theory Combination

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

 $\begin{aligned} &a = b + 2 \land A = \operatorname{write}(B, a + 1, 4) \land \\ &(\operatorname{read}(A, b + 3) = 2 \lor f(a - 1) \neq f(b + 1)) \end{aligned}$

Solving that formula requires reasoning over

- the theory of linear arithmetic ($T_{\rm LA}$)
- the theory of arrays (T_A)
- the theory of uninterpreted functions ($T_{\rm UF}$)

Question: Given solvers for each theory, can we combine them modularly into one for $T_{LA} \cup T_A \cup T_{UF}$?

Under certain conditions, we can do it with the Nelson-Oppen combination method

Reminder: First-Order Logic Symbols

The syntax of many-sorted FOL is defined with respect to a signature, $\Sigma := \{\Sigma^S, \Sigma^F\}$, where:

- Σ^{S} is a set of **sorts**: e.g., Real, Int, Set
- Σ^F is a set of function symbols: e.g., ∈, +, +_[2], <, ≬

In addition to the function symbols, the alphabet of FOL also contains logical symbols:

- Parentheses: "(", ")"
- Propositional connectives: \rightarrow , \neg
- Variables: *v*₁, *v*₂, ...
- Quantifiers: ∀
- Equality symbol: for each sort σ in Σ^{S} , there may be an optional symbol $=_{\sigma}$.

Reminder: First-Order Logic Signatures

The syntax of many-sorted FOL is defined with respect to a signature, $\Sigma := \{\Sigma^{S}, \Sigma^{F}\}$, where:

- Σ^{S} is a set of **sorts**: e.g., Real, Int, Set
- Σ^{F} is a set of function symbols: e.g., ϵ , +, +_[2], <, \emptyset

For each variable v, we associate a sort $sort(v) \in \Sigma^{S}$.

For each function symbol $f \in \Sigma^F$ we associate an **arity** *n*, which is a natural number denoting the number of arguments *f* takes, and an *n* + 1-tuple of sorts: $sort(f) = \langle \sigma_1, \ldots, \sigma_n, \sigma_{n+1} \rangle$. We say *f* returns σ_{n+1} .

Example: The function symbol + has arity 2, and $sort(+) = \langle Real, Real, Real \rangle$ in the intended translation.

Reminder: First-Order Logic Signatures

We assume that Σ^{S} always includes a distinguished sort Bool and that Σ^{F} contains distinguished symbols $\{T, \bot\}$.

We assume $sort(\bot) = sort(\top) = \langle Bool \rangle$

There are two special kinds of functions, constant symbols and predicate symbols:

- Constant symbols are 0-arity function symbols: e.g., \perp , \top , π , John, 0
- A predicate symbol is a function symbol that returns Bool
 - Each equality symbol $=_{\sigma}$ is a predicate symbol with arity 2 and $sort(=_{\sigma}) = \langle \sigma, \sigma, Bool \rangle$.

Example: $sort(\epsilon) = (Set, Set, Bool)$ in the intended translation.

To specify which **first-order language** we have before us, we need to:

- say whether the equality symbol is present;
- define the signature.

Reminder: First-Order Logic Semantics

Formally, the truth of a Σ -formula is determined by an **interpretation** / of Σ consisting of the following:

1. For each sort $\sigma \in \Sigma^{S}$, a nonempty set called the **domain** of σ , written $dom(\sigma)$

- We always assume $dom(Bool) = \{T, F\}$

- 2. A mapping from each *n*-ary function symbol f in Σ^F of sort $sort(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$ to f', an *n*-ary function from $dom(\sigma_1) \times \dots \times dom(\sigma_n)$ to $dom(\sigma_{n+1})$
 - We always assume $\perp^{\prime} = F$, $\top^{\prime} = T$, and $=_{\sigma}^{\prime} ab = T$ iff a = b
- 3. A mapping from each variable v of sort σ to its interpretation v¹, an element of $dom(\sigma)$

(1) and (2) without (3) is called a structure or a model.

First-order theories and their combination

A **theory** T is a pair (Σ, S) , where:

- Σ is a signature, which we recall from Lecture 4 consists of a set Σ^S of sorts and a set Σ^F of function symbols.
- S is a class (in the sense of set theory) of Σ -structures.

We limit interpretations of Σ -formulas to those that have their structures in S.

Theory combination: Let $T_1 = (\Sigma_1, S_1)$ and $T_2 = (\Sigma_2, S_2)$ be two theories. The combination of T_1 and T_2 is the theory $T_1 \oplus T_2 = (\Sigma, S)$ where $\Sigma = \Sigma_1 \cup \Sigma_2$ and $S = \{\Sigma$ -structures $I \mid I^{\Sigma_1, \emptyset} \in S_1 \text{ and } I^{\Sigma_2, \emptyset} \in S_2\}$.

Above, I is an interpretation, and $I^{\Sigma,U}$ denotes the interpretation obtained by interpreting symbols in Σ and variables in U. Structures do not interpret variables, so U is empty above.

Theory Combination: Preliminaries

First-order theories without the equality symbol are rarely considered. We will follow this convention.

Convex theory: A Σ -theory T is convex if for every conjunctive Σ -formula ϕ :

 $(\phi \rightarrow \bigvee_{i=1}^{n} x_i = y_i)$ is T-valid for some finite $n > 1 \rightarrow (\phi \rightarrow x_i = y_i)$ is T-valid for some $i \in 1, ..., n$,

where x_i, y_i , for $i \in 1, ..., n$, are some variables.

Theory Combination: Preliminaries

Example (convex): Linear real arithmetic is convex. A conjunction of linear arithmetic predicates defines a set of values which can be empty, a singleton, as in

 $x \le 3 \land x \ge 3 \rightarrow x = 3$

or infinitely large, and hence it implies an infinite disjunction. All three cases fit the definition of convexity.

Example (non-convex): Linear integer arithmetic is non-convex. For example, while

$$x_1=1 \wedge x_2=2 \wedge 1 \leq x_3 \wedge x_3 \leq 2
ightarrow ig(x_3=1 \lor x_3=2ig)$$
 holds, neither

 $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \to x_3 = 1$, nor

 $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \to x_3 = 2$ holds.

Many theories used in practice are nonconvex, which makes them computationally harder to combine with other theories due to case splits, which we'll see.

Nelson-Oppen: Step 1, Purification

Given decision procedures for the satisfiability of formulas in theories T_1 and T_2 , we are interested in constructing a decision procedure for the satisfiability of $T_1 \oplus T_2$.

Given a conjunctive formula ϕ (i.e., a conjunction of literals) over the combined signature $\Sigma_1 \cup \Sigma_2$, the first step is to purify ϕ by constructing and equisatisfiable set of conjunctive formulas $\phi_1 \cup \phi_2$ such that each ϕ_i consists of only Σ_i -formulas.

Purification:

Given a conjunctive formula, ϕ :

- 1. Find a pure sub-term (i.e., a Σ_i -sub-term for some i), t.
- 2. Replace t with a fresh variable v, and add the term v = t to the conjunctive formula.
- 3. Repeat steps 1 and 2 until all atomic formulas are pure.
- 4. Split the resulting conjunctive formula into two formulas $\phi_1 \cup \phi_2$, which are linked by a set of shared variables.

Motivating Example (Convex Case)

Consider the following set of literals over $T_{LRA} \cup T_{UF}$ (T_{LRA} , linear real arithmetic):

$$f(f(x) - f(y)) = a$$

$$f(0) > a + 2$$

$$x = y$$

First step: purify literals so that each belongs to a single theory

$$f(f(x) - f(y)) = a \implies f(e_1) = a \implies f(e_1) = a$$
$$e_1 = f(x) - f(y) \qquad e_1 = e_2 - e_3$$
$$e_2 = f(x)$$
$$e_3 = f(y)$$

10 / 28

Nelson-Oppen: Step 2, Exchange Interface Equalities

Formulas ϕ_1 and ϕ_2 , which were produces through purification are linked by a set of shared variables. Let V = shared(ϕ_1 , ϕ_2) be these shared variables.

Let E be an equivalence relation over V. The **arrangement** A(V, E) of V induced by E is the formula:

$$A(V,E): \bigwedge_{u,v\in V.uEv} u = v \land \bigwedge_{u,v\in V.\neg uEv} u \neq v,$$

which asserts that variables related by E are equal and that variables unrelated by E are not equal. The original formula ϕ is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation E of V such that:

- $\phi_1 \wedge A(V, E)$ is T_1 -satisfiable, and
- $\phi_2 \wedge A(V, E)$ is T_2 -satisfiable

Exchanging interface equalities: Step 2 of the Nelson-Oppen procedure asks decision procedures P_1 and P_2 for theories T_1 and T_2 , respectively, to propagate information to each other in the form of entailed equalities over shared variables.

Motivating Example (Convex Case)

Second step: exchange entailed <u>interface equalities</u>, equalities over shared constants $e_1, e_2, e_3, e_4, e_5, a$. **Note:** We can view variables as being existentially quantified or as free constants, i.e., constant symbols not in the theory signature.

$$\begin{array}{ccccc} L_1 & L_2 \\ \hline f(e_1) = a & e_2 - e_3 = e_1 \\ f(x) = e_2 & e_4 = 0 \\ f(y) = e_3 & e_5 > a + 2 \\ f(e_4) = e_5 & e_2 = e_3 \\ x = y & a = e_5 \\ e_1 = e_4 \end{array}$$

 $\begin{array}{ll} L_1 \vDash_{\mathrm{UF}} e_2 = e_3 & \quad L_2 \vDash_{\mathrm{LRA}} e_1 = e_4 \\ L_1 \vDash_{\mathrm{UF}} a = e_5 \end{array}$

Third step: check for satisfiability locally

 $\begin{array}{c} L_1 \not\models_{\mathrm{UF}} \bot \\ L_2 \models_{\mathrm{LRA}} \bot \end{array} \quad \text{Report unsatisfiable} \end{array}$

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\text{LIA}} \cup T_{\text{UF}}$ (T_{LIA} , linear integer arithmetic):

 $1 \le x \le 2$ f(1) = af(2) = f(1) + 3a = b + 2

First step: purify literals so that each belongs to a single theory

$$f(1) = a \implies f(e_1) = a$$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_1, a, b, e_2, e_3, e_4$.

No more entailed equalities, but $L_1 \models_{\text{LIA}} x = e_1 \lor x = e_2$ Consider each case of $x = e_1 \lor x = e_2$ separately. Note: For convex theories, entailed clauses consisting of equality literals over shared constants are unit. For non-convex theories, case-splitting is necessary. Case 1) $x = e_1$ $L_2 \models_{\text{UF}} a = b$, which entails \perp when sent to L_1

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_1, a, b, e_2, e_3, e_4$

$$\begin{array}{cccc} L_1 & L_2 \\ 1 \le x & f(e_1) = a \\ x \le 2 & f(x) = b \\ e_1 = 1 & f(e_2) = e_3 \\ a = b + 2 & f(e_1) = e_4 \\ e_2 = 2 & x = e_2 \\ e_3 = e_4 + 3 \\ a = e_4 \\ x = e_2 \end{array}$$

Case 2) $x = e_2$ $L_2 \models_{\text{UF}} e_3 = b$, which entails \perp when sent to L_1

Non-convex case: Disjunctions of equalities

A procedure for a non-convex theory T_i must be able to find disjunctions of equalities that are entailed by a Σ_i -formula ϕ_i . Disjunctions should be as small as possible since the Nelson-Oppen method must branch on each disjunct.

A disjunction is **minimal** if it is implied by ϕ_i and each smaller disjunciton is not implied by ϕ_i .

A simple procedure to find a minimal disjuction:

- First, consider the disjunction of all equalities at once.
- If it is not implied, then no subset is implied either, so we are done.
- Otherwise, drop each equality in turn: if the remaining disjunction is still implied by ϕ_i , continue with this smaller disjunction; otherwise, restore the equality and continue.
- When all equalities have been considered, the resulting disjunction is minimal.

The Nelson-Oppen Method

- For i = 1, 2, let T_i be a first-order theory of signature Σ_i (which includes =)
- Let $T = T_1 \cup T_2$
- Let *C* be a finite set of free constants (i.e., not in $\Sigma_1 \cup \Sigma_2$)

We consider only input problems of the form

 $L_1 \cup L_2$

where each L_i is a finite set of ground (i.e., variable-free) $(\Sigma_i \cup C)$ -literals

Note: Because of purification, there is no loss of generality in considering only ground $(\Sigma_i \cup C)$ -literals

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of ground $(\Sigma_i \cup C)$ -literals **Output:** sat or unsat

1. Guess an <u>arrangement</u> A, i.e., a set of equalities and disequalities over C such that

 $c = d \in A$ or $c \neq d \in A$ for all $c, d \in C$

- 2. If $L_i \cup A$ is T_i -unsatisfiable for i = 1 or i = 2, return **unsat**
- 3. Otherwise, return sat

Correctness of the NO Method

Proposition (Termination) The method is terminating. (Trivially, because there is only a finite number of arrangements to guess.)

Proposition (Refutation Soundness) If the method returns **unsat** for every arrangement, the input is $(T_1 \cup T_2)$ -unsatisfiable. (Because unsatisfiability in $(T_1 \cup T_2)$ is preserved.)

Proposition (Solution Soundness) If $\Sigma_1 \cap \Sigma_2 = \emptyset$ and T_1 and T_2 are stably infinite, when the method returns sat for some arrangement, the input is $(T_1 \cup T_2)$ -is satisfiable. (Because satisfiability in $(T_1 \cup T_2)$ is preserved for stably infinite theories.)

Proposition (Completeness) For every arrangement, there is a terminating and progressive strategy to return sat or unsat. (Because the method is terminating - above - and never gets stuck on its way to deriving sat or unsat.)

Stably Infinite Theories

Def. Let Σ be a signature, let $S \subset \Sigma^S$ be a set of sorts, and let **T** be a Σ -theory. We say that **T** is stably-infinite with respect to S if for every **T**-satisfiable quantifier-free Σ -formula ϕ , there exists a **T**-interpretation *I* satisfying ϕ , such that $dom(\sigma)$ is infinite for each sort $\sigma \in S$. Nelson-Oppen requires that T_1 and T_2 , which are to be combined, are stably-infinite over (at least) the set of common sorts $\Sigma_1^S \cap \Sigma_2^S$.

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders (over rationals or reals), theory of lists (of integers))
- Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory **T** is <u>convex</u> iff, for any set *L* of literals $L \vDash_T s_1 = t_1 \lor \cdots \lor s_n = t_n \implies L \vDash_T s_i = t_i$ for some *i*

 Note: With convex theories, arrangements do not need to be guessed—they

 December 4. <u>29A3 be computed by (theory) propagation</u>
 CS257
 20 / 28

Stably Infinite Theories

Def. Let Σ be a signature, let $S \subset \Sigma^S$ be a set of sorts, and let **T** be a Σ -theory. We say that **T** is stably-infinite with respect to S if for every **T**-satisfiable quantifier-free Σ -formula ϕ , there exists a **T**-interpretation I satisfying ϕ , such that $dom(\sigma)$ is infinite for each sort $\sigma \in S$.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)
- Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite theories

Stably Infinite Theories: Example

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this theory cannot be stably-infinite.

Example: Consider T_{array} where both indices and elements are of the same sort bv, so that the sorts of T_{array} are {array, bv}, and a theory T_{bv} that requires the sort bv to be interpreted as bit-vectors of size 1.

- Both theories are decidable and we would like to decide the combination theory in a Nelson-Oppen-like framework.
- Let $a_1, ..., a_5$ be array variables and consider the following constraints: $a_i \neq a_j$, for $1 \le i < j \le 5$.
- These constraints are entirely within T_{array} . Array theory solver is given all constraints and the bit-vector theory solver is given none.
- **Problem:** Array solver tells us these constraints are SAT, but there are only four possible different arrays with elements and indices over bit-vectors of size 1.

SMT Solving with Multiple Theories

Let T_1, \ldots, T_n be theories with respective solvers S_1, \ldots, S_n

How can we integrate all of them cooperatively into a single SMT solver for $T = T_1 \cup \cdots \cup T_n$?

Quick Solution:

- 1. Combine S_1, \ldots, S_n with Nelson-Oppen into a theory solver for **T**
- 2. Build a DPLL(T) solver as usual

Better Solution:

- 1. Extend DPLL(T) to DPLL(T_1, \ldots, T_n)
- 2. Lift Nelson-Oppen to the $DPLL(X_1, \ldots, X_n)$ level
- 3. Build a DPLL (T_1, \ldots, T_n) solver

Modeling DPLL(T_1, \ldots, T_n) Abstractly

- Let n = 2, for simplicity
- Let T_i be of signature Σ_i for i = 1, 2, with $\Sigma_1 \cap \Sigma_2 = \emptyset$
- Let *C* be a set of free constants
- Assume wlog that each input literal has signature $(\Sigma_1 \cup C)$ or $(\Sigma_2 \cup C)$ (no mixed literals)
- Let $M|_i \stackrel{\text{def}}{=} \{ (\Sigma_i \cup C) \text{-literals of } M \text{ and their complement} \}$

• Let
$$I(M) \stackrel{\text{def}}{=} \{c = d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\} \cup \{c \neq d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\}$$

(interface literals)

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
$$\frac{l \in \text{Lits}(F) \cup I(M) \quad l, \neg l \notin M}{M := M \bullet l}$$

Only change: decide on interface equalities as well

$$T-\mathbf{Propagate} \quad \frac{I \in \mathtt{Lits}(\mathsf{F}) \cup \mathrm{I}(\mathsf{M}) \quad i \in \{1,2\} \quad \mathsf{M} \models_{T_i} I \quad I, \neg I \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} I}$$

Only change: propagate interface equalities as well, but reason locally in each T_i

Abstract DPLL Modulo Multiple Theories

\mathcal{T} -Conflict

$$\frac{\mathsf{C} = \mathsf{no} \quad l_1, \dots, l_n \in \mathsf{M} \quad l_1, \dots, l_n \models_{\mathcal{T}_i} \perp \quad i \in \{1, 2\}}{\mathsf{C} := \neg l_1 \lor \dots \lor \neg l_n}$$

T-Explain

$$\frac{\mathsf{C} = l \lor D \quad \neg l_1, \dots, \neg l_n \vDash_{\mathcal{T}_i} \neg l \quad i \in \{1, 2\} \quad \neg l_1, \dots, \neg l_n \prec_{\mathsf{M}} \neg l}{\mathsf{C} \coloneqq l_1 \lor \dots \lor l_n \lor D}$$

Only change: reason locally in each T_i

I-Learn

$$\models_{T_i} I_1 \lor \cdots \lor I_n \quad I_1, \dots, I_n \in \mathsf{M}|_i \cup \mathsf{I}(\mathsf{M}) \quad i \in \{1, 2\}$$
$$\mathsf{F} := \mathsf{F} \cup \{I_1 \lor \cdots \lor I_n\}$$

New rule: for entailed disjunctions of interface literals

Example — Convex Theories

M	F	С	rule
$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \\ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \\ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \\ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \\ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \\ \mathbf{Fail} \end{array}$	FFFFFF	no no no no ¬7∨¬10	by Propagate ⁺ by 7-Propagate (1, 2, 4 \models UF 8) by 7-Propagate (5, 6, 8 \models LRA 9) by 7-Propagate (0, 3, 9 \models UF 10) by 7-Conflict (7, 10 \models LRA 1) by Fail

Example — Non-convex Theories

