
CS257: Introduction to Automated Reasoning
Theory Combination



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a = b + 2 ∧ A = write(B, a + 1,4) ∧
(read(A,b + 3) = 2 ∨ f (a − 1) ≠ f (b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them modularly into one for
TLA ∪TA ∪TUF?

Under certain conditions, we can do it with the Nelson-Oppen combination method

December 4, 2023 CS257 1 / 28



Reminder: First-Order Logic Symbols

The syntax of many-sorted FOL is defined with respect to a signature, Σ ∶= {ΣS ,ΣF},
where:

• ΣS is a set of sorts: e.g., Real, Int,Set

• ΣF is a set of function symbols: e.g., ∈,+,+[2],<,≬

In addition to the function symbols, the alphabet of FOL also contains logical symbols:

• Parentheses: “(”, “)”

• Propositional connectives: →, ¬
• Variables: v1, v2, . . .

• Quantifiers: ∀
• Equality symbol: for each sort σ in ΣS , there may be an optional symbol =σ.

December 4, 2023 CS257 2 / 28



Reminder: First-Order Logic Signatures

The syntax of many-sorted FOL is defined with respect to a signature, Σ ∶= {ΣS ,ΣF},
where:

• ΣS is a set of sorts: e.g., Real, Int,Set

• ΣF is a set of function symbols: e.g., ∈,+,+[2],<,≬

For each variable v , we associate a sort sort(v) ∈ ΣS .

For each function symbol f ∈ ΣF we associate an arity n, which is a natural number
denoting the number of arguments f takes, and an n + 1-tuple of sorts:
sort(f ) = ⟨σ1, . . . , σn, σn+1⟩. We say f returns σn+1.

Example: The function symbol + has arity 2, and sort(+) = ⟨Real ,Real ,Real⟩ in the
intended translation.

December 4, 2023 CS257 3 / 28



Reminder: First-Order Logic Signatures

We assume that ΣS always includes a distinguished sort Bool and that ΣF contains
distinguished symbols {⊺,�}.
We assume sort(�) = sort(⊺) = ⟨Bool⟩
There are two special kinds of functions, constant symbols and predicate symbols:

• Constant symbols are 0-arity function symbols: e.g., �, ⊺, π, John, 0
• A predicate symbol is a function symbol that returns Bool

- Each equality symbol =σ is a predicate symbol with arity 2 and
sort(=σ) = ⟨σ,σ,Bool⟩.

Example: sort(∈) = ⟨Set,Set,Bool⟩ in the intended translation.

To specify which first-order language we have before us, we need to:

• say whether the equality symbol is present;

• define the signature.

December 4, 2023 CS257 4 / 28



Reminder: First-Order Logic Semantics

Formally, the truth of a Σ-formula is determined by an interpretation I of Σ
consisting of the following:

1. For each sort σ ∈ ΣS , a nonempty set called the domain of σ, written dom(σ)
- We always assume dom(Bool) = {T,F}

2. A mapping from each n-ary function symbol f in ΣF of sort
sort(f ) = ⟨σ1, . . . , σn, σn+1⟩ to f I , an n-ary function from dom(σ1) ×⋯ × dom(σn)
to dom(σn+1)

- We always assume �I = F, ⊺I = T, and =Iσ ab = T iff a = b
3. A mapping from each variable v of sort σ to its interpretation v I , an element of

dom(σ)

(1) and (2) without (3) is called a structure or a model.

December 4, 2023 CS257 5 / 28



First-order theories and their combination

A theory T is a pair (Σ,S), where:

• Σ is a signature, which we recall from Lecture 4 consists of a set ΣS of sorts and
a set ΣF of function symbols.

• S is a class (in the sense of set theory) of Σ-structures.

We limit interpretations of Σ-formulas to those that have their structures in S .

Theory combination: Let T1 = (Σ1,S1) and T2 = (Σ2,S2) be two theories. The
combination of T1 and T2 is the theory T1 ⊕T2 = (Σ,S) where Σ = Σ1 ∪Σ2 and S =
{Σ-structures I ∣ IΣ1,∅ ∈ S1 and IΣ2,∅ ∈ S2}.
Above, I is an interpretation, and IΣ,U denotes the interpretation obtained by
interpreting symbols in Σ and variables in U. Structures do not interpret variables, so
U is empty above.

December 4, 2023 CS257 6 / 28



Theory Combination: Preliminaries

First-order theories without the equality symbol are rarely considered. We will follow
this convention.

Convex theory: A Σ-theory T is convex if for every conjunctive Σ-formula ϕ:

(ϕ→ ⋁n
i=1 xi = yi) is T-valid for some finite n > 1 →

(ϕ→ xi = yi) is T-valid for some i ∈ 1, ...,n,
where xi , yi , for i ∈ 1, ...,n, are some variables.

December 4, 2023 CS257 7 / 28



Theory Combination: Preliminaries

Example (convex): Linear real arithmetic is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x ≤ 3 ∧ x ≥ 3→ x = 3
or infinitely large, and hence it implies an infinite disjunction. All three cases fit the
definition of convexity.

Example (non-convex): Linear integer arithmetic is non-convex. For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ (x3 = 1 ∨ x3 = 2) holds, neither
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = 1, nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ x3 = 2 holds.

Many theories used in practice are nonconvex, which makes them computationally
harder to combine with other theories due to case splits, which we’ll see.

December 4, 2023 CS257 8 / 28



Nelson-Oppen: Step 1, Purification

Given decision procedures for the satisfiability of formulas in theories T1 and T2, we
are interested in constructing a decision procedure for the satisfiability of T1 ⊕T2.

Given a conjunctive formula ϕ (i.e., a conjunction of literals) over the combined
signature Σ1 ∪Σ2, the first step is to purify ϕ by constructing and equisatisfiable set of
conjunctive formulas ϕ1 ∪ ϕ2 such that each ϕi consists of only Σi -formulas.

Purification:

Given a conjunctive formula, ϕ:

1. Find a pure sub-term (i.e., a Σi -sub-term for some i), t.

2. Replace t with a fresh variable v , and add the term v = t to the conjunctive
formula.

3. Repeat steps 1 and 2 until all atomic formulas are pure.

4. Split the resulting conjunctive formula into two formulas ϕ1 ∪ ϕ2, which are linked
by a set of shared variables.

December 4, 2023 CS257 9 / 28



Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪TUF

(TLRA, linear real arithmetic):

f (f (x) − f (y)) = a
f (0) > a + 2

x = y

First step: purify literals so that each belongs to a single theory

f (f (x) − f (y)) = a Ô⇒ f (e1) = a Ô⇒ f (e1) = a
e1 = f (x) − f (y) e1 = e2 − e3

e2 = f (x)
e3 = f (y)

f (0) > a + 2 Ô⇒ f (e4) > a + 2 Ô⇒ f (e4) = e5
e4 = 0 e4 = 0

e5 > a + 2

December 4, 2023 CS257 10 / 28



Nelson-Oppen: Step 2, Exchange Interface Equalities

Formulas ϕ1 and ϕ2, which were produces through purification are linked by a set of
shared variables. Let V = shared(ϕ1, ϕ2) be these shared variables.

Let E be an equivalence relation over V. The arrangement A(V ,E) of V induced by E
is the formula:

A(V ,E) ∶ ⋀
u,v∈V .uEv

u = v ∧ ⋀
u,v∈V .¬uEv

u ≠ v ,

which asserts that variables related by E are equal and that variables unrelated by E
are not equal. The original formula ϕ is (T1 ∪T2)-satisfiable iff there exists an
equivalence relation E of V such that:

• ϕ1 ∧A(V ,E) is T1-satisfiable, and

• ϕ2 ∧A(V ,E) is T2-satisfiable

Exchanging interface equalities: Step 2 of the Nelson-Oppen procedure asks
decision procedures P1 and P2 for theories T1 and T2, respectively, to propagate
information to each other in the form of entailed equalities over shared variables.

December 4, 2023 CS257 11 / 28



Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants
e1, e2, e3, e4, e5, a. Note: We can view variables as being existentially quantified or as
free constants, i.e., constant symbols not in the theory signature.

L1 L2
f (e1) = a e2 − e3 = e1
f (x) = e2 e4 = 0
f (y) = e3 e5 > a + 2
f (e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 ⊧UF e2 = e3 L2 ⊧LRA e1 = e4

L1 ⊧UF a = e5

Third step: check for satisfiability locally

L1 /⊧UF �
L2 ⊧LRA � Report unsatisfiable

December 4, 2023 CS257 12 / 28



Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪TUF (TLIA, linear integer
arithmetic):

1 ≤ x ≤ 2
f (1) = a
f (2) = f (1) + 3

a = b + 2

First step: purify literals so that each belongs to a single theory

f (1) = a Ô⇒ f (e1) = a
e1 = 1

f (2) = f (1) + 3 Ô⇒ e2 = 2
f (e2) = e3
f (e1) = e4

e3 = e4 + 3

December 4, 2023 CS257 13 / 28



Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
x , e1, a,b, e2, e3, e4.

L1 L2
1 ≤ x f (e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3
a = b + 2 f (e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

No more entailed equalities, but L1 ⊧LIA x = e1 ∨ x = e2 Consider each case of
x = e1 ∨ x = e2 separately. Note: For convex theories, entailed clauses consisting of
equality literals over shared constants are unit. For non-convex theories, case-splitting
is necessary. Case 1) x = e1 L2 ⊧UF a = b, which entails � when sent to
L1

December 4, 2023 CS257 14 / 28



Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants
x , e1, a,b, e2, e3, e4

L1 L2
1 ≤ x f (e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3
a = b + 2 f (e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

Case 2) x = e2 L2 ⊧UF e3 = b, which entails � when sent to L1

December 4, 2023 CS257 15 / 28



Non-convex case: Disjunctions of equalities

A procedure for a non-convex theory Ti must be able to find disjunctions of equalities
that are entailed by a Σi -formula ϕi . Disjunctions should be as small as possible since
the Nelson-Oppen method must branch on each disjunct.

A disjunction is minimal if it is implied by ϕi and each smaller disjunciton is not
implied by ϕi .

A simple procedure to find a minimal disjuction:

• First, consider the disjunction of all equalities at once.

• If it is not implied, then no subset is implied either, so we are done.

• Otherwise, drop each equality in turn: if the remaining disjunction is still implied
by ϕi , continue with this smaller disjunction; otherwise, restore the equality and
continue.

• When all equalities have been considered, the resulting disjunction is minimal.

December 4, 2023 CS257 16 / 28



The Nelson-Oppen Method

• For i = 1,2, let Ti be a first-order theory of signature Σi (which includes =)

• Let T = T1 ∪T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free) (Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals

December 4, 2023 CS257 17 / 28



The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over C such
that

c = d ∈ A or c ≠ d ∈ A for all c ,d ∈ C

2. If Li ∪A is Ti -unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

December 4, 2023 CS257 18 / 28



Correctness of the NO Method

Proposition (Termination) The method is terminating. (Trivially, because there is only a finite

number of arrangements to guess.)

Proposition (Refutation Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪T2)-unsatisfiable. (Because unsatisfiability in (T1 ∪T2) is

preserved.)

Proposition (Solution Soundness) If Σ1 ∩Σ2 = ∅ and T1 and T2 are stably infinite,
when the method returns sat for some arrangement, the input is (T1 ∪T2)-is
satisfiable. (Because satisfiability in (T1 ∪T2) is preserved for stably infinite theories.)

Proposition (Completeness) For every arrangement, there is a terminating and
progressive strategy to return sat or unsat. (Because the method is terminating - above - and

never gets stuck on its way to deriving sat or unsat.)

December 4, 2023 CS257 19 / 28



Stably Infinite Theories

Def. Let Σ be a signature, let S ⊂ ΣS be a set of sorts, and let T be a Σ-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free
Σ-formula ϕ, there exists a T-interpretation I satisfying ϕ, such that dom(σ) is infinite
for each sort σ ∈ S . Nelson-Oppen requires that T1 and T2, which are to be combined,
are stably-infinite over (at least) the set of common sorts ΣS

1 ∩ΣS
2 .

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear orders (over rationals or

reals), theory of lists (of integers))

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals L ⊧T s1 = t1 ∨⋯ ∨ sn = tn Ô⇒
L ⊧T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagationDecember 4, 2023 CS257 20 / 28



Stably Infinite Theories

Def. Let Σ be a signature, let S ⊂ ΣS be a set of sorts, and let T be a Σ-theory. We
say that T is stably-infinite with respect to S if for every T-satisfiable quantifier-free
Σ-formula ϕ, there exists a T-interpretation I satisfying ϕ, such that dom(σ) is infinite
for each sort σ ∈ S .

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite
theories

December 4, 2023 CS257 21 / 28



Stably Infinite Theories: Example

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence,
this theory cannot be stably-infinite.

Example: Consider Tarray where both indices and elements are of the same sort bv, so
that the sorts of Tarray are {array, bv}, and a theory Tbv that requires the sort bv to
be interpreted as bit-vectors of size 1.

• Both theories are decidable and we would like to decide the combination theory in
a Nelson-Oppen-like framework.

• Let a1, ..., a5 be array variables and consider the following constraints: ai ≠ aj , for
1 ≤ i < j ≤ 5.

• These constraints are entirely within Tarray . Array theory solver is given all
constraints and the bit-vector theory solver is given none.

• Problem: Array solver tells us these constraints are SAT, but there are only four
possible different arrays with elements and indices over bit-vectors of size 1.

December 4, 2023 CS257 22 / 28



SMT Solving with Multiple Theories

Let T1, . . . ,Tn be theories with respective solvers S1, . . . ,Sn

How can we integrate all of them cooperatively into a single SMT solver for
T = T1 ∪⋯ ∪Tn?

Quick Solution:

1. Combine S1, . . . ,Sn with Nelson-Oppen into a theory solver for T

2. Build a DPLL(T ) solver as usual

Better Solution:

1. Extend DPLL(T ) to DPLL(T1, . . . ,Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . ,Xn) level

3. Build a DPLL(T1, . . . ,Tn) solver

December 4, 2023 CS257 23 / 28



Modeling DPLL(T1, . . . ,Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1,2, with Σ1 ∩Σ2 = ∅

• Let C be a set of free constants

• Assume wlog that each input literal has signature (Σ1 ∪ C) or (Σ2 ∪ C) (no
mixed literals)

• Let M∣i def= {(Σi ∪ C)-literals of M and their complement}

• Let I(M) def= {c = d ∣ c ,d occur in C , M∣1 and M∣2} ∪
{c ≠ d ∣ c ,d occur in C , M∣1 and M∣2}

(interface literals)

December 4, 2023 CS257 24 / 28



Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lits(F)∪I(M) l ,¬l ∉M

M ∶=M ● l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lits(F)∪I(M) i ∈ {1,2} M ⊧Ti

l l ,¬l ∉M
M ∶=M l

Only change: propagate interface equalities as well, but reason locally in each Ti

December 4, 2023 CS257 25 / 28



Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈M l1, . . . , ln ⊧Ti
� i ∈ {1,2}

C ∶= ¬l1 ∨⋯ ∨ ¬ln
T -Explain

C = l ∨D ¬l1, . . . ,¬ln ⊧Ti
¬l i ∈ {1,2} ¬l1, . . . ,¬ln ≺M ¬l

C ∶= l1 ∨⋯ ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

⊧Ti
l1 ∨⋯ ∨ ln l1, . . . , ln ∈M∣i ∪ I(M) i ∈ {1,2}

F ∶= F ∪ {l1 ∨⋯ ∨ ln}
New rule: for entailed disjunctions of interface literals

December 4, 2023 CS257 26 / 28



Example — Convex Theories

F ∶=

0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = a ∧

1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (x) = e2 ∧

2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (y) = e3 ∧

3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e4) = e5 ∧

4
³¹¹·¹¹µ
x = y ∧

e2 − e3 = e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5

∧ e4 = 0
´¹¹¹¹¹¸¹¹¹¹¹¶

6

∧ e5 > a + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7

e2 = e3
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

8

e1 = e4
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

9

a = e5
´¹¹¹¹¹¸¹¹¹¹¹¶

10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 ⊧UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 ⊧LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 ⊧UF 10)
0 1 2 3 4 5 6 7 8 9 10 F ¬7 ∨ ¬10 by T -Conflict (7, 10 ⊧LRA �)

Fail by Fail

December 4, 2023 CS257 27 / 28



Example — Non-convex Theories

F ∶=

0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = a ∧

1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (x) = b ∧

2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e2) = e3 ∧

3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f (e1) = e4 ∧
1 ≤ x
´¹¹¸¹¹¶

4

∧ x ≤ 2
´¹¹¸¹¹¶

5

∧ e1 = 1
´¹¹¹¹¹¸¹¹¹¹¹¶

6

∧ a = b + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7

∧ e2 = 2
´¹¹¹¹¹¸¹¹¹¹¹¶

8

∧ e3 = e4 + 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

9

a = e4
´¹¹¹¹¹¸¹¹¹¹¹¶

10

x = e1
´¹¹¹¹¹¸¹¹¹¹¹¶

11

x = e2
´¹¹¹¹¹¸¹¹¹¹¹¶

12

a = b
´¹¹¸¹¹¶
13

M F C rule
F no

0⋯ 9 F no by Propagate+
0⋯ 9 10 F no by T -Propagate (0, 3 ⊧UF 10)
0⋯ 9 10 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by I-Learn (⊧LIA ¬4 ∨ ¬5 ∨ 11 ∨ 12)

0⋯ 9 10 ● 11 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Decide
0⋯ 9 10 ● 11 13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 ⊧UF 13)
0⋯ 9 10 ● 11 13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 ¬7 ∨ ¬13 by T -Conflict (7, 13 ⊧UF �)

0⋯ 9 10 ¬13 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Backjump
0⋯ 9 10 ¬13 ¬11 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, ¬13 ⊧UF ¬11)

0⋯ 9 10 ¬13 ¬11 12 F , ¬4 ∨ ¬5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)

Fail ⋯ ⋯ by Fail

December 4, 2023 CS257 28 / 28


