CS257: Introduction to Automated Reasoning Quantifier Instantiation

SMT solvers

- Traditionally:
- Efficient decision procedures for quantifier-free constraints over theories:
- Arithmetic
- Uninterpreted functions (UF)
- Bitvectors
- Arrays
- Datatypes
- More recently: strings, floating points, sets, relations, ...
- In the past decade or so:
- Efficient (heuristic) techniques for quantified formulas as well
- Focus of this lecture.

Applications of \forall in SMT

Quantifiers are used for:

- Automated theorem proving:
- Background axioms: $\forall x, y \cdot(x+y=y+x)$
- Software verification:
- Unfolding: $\forall x .(f o o(x)=\operatorname{bar}(x+1))$
- Code contracts: $\forall x .(\operatorname{pre}(x) \rightarrow \operatorname{post}(f(x)))$
- Frame axioms: $\forall x .(x>0 \rightarrow f(x)=f(x+1))$
- Function synthesis:
- Synthesis conjectures: $\forall i$: input. $\exists o$: output. $R(o, i)$
- Planning:
- Specifications: $\exists p$: plan. $\forall t$: time. $R(p, t)$

Today

- Herbrand Theorem
- Quantifier Instantiation (DP Ch. 9.5)
- Trigger-based instantiation strategies
- Other instantiation strategies:
- conflict-based instantiation
- model-based instantiation

[^0]
Review: Clausal Form

We say a first-order logic formula is in Clausal Form if,

1. it is in PCNF;
2. it is closed (i.e., does not contain free variables); and
3. it only contains universal quantifiers.

Example: $\forall y . \forall z .(p(f(y)) \wedge \neg q(y, z))$
Given any first-order logic sentence ϕ, one can transform ϕ into an equi-satisfiable formula ϕ^{\prime} in clausal form

Example: $\forall x .(p(x) \rightarrow \exists y \cdot q(x, y))$

1. Eliminate implications: $\forall x \cdot(\neg p(x) \vee \exists y \cdot q(x, y))$
2. Skolemize $\left(y \mapsto f_{y}(x)\right): \forall x .\left(\neg p(x) \vee q\left(x, f_{y}(x)\right)\right)$

First-order satisfiability

Skolemization reduces the problem of first-order satisfiability to first-order satisfiability of formulas in clausal form

Herbrand's Theorem will further reduce this (in a weaker sense) to propositional satisfiability For now, assume we are dealing with formulas in clausal form

Herbrand Interpretation

Given a Σ-formula ϕ, e.g.,

$$
\forall x \cdot(\neg p(x) \vee q(x, g(x)))
$$

there is no easy way to describe the set of possible interpretations (e.g., the definitions of p, q, g can be arbitrary)
We define canonical interpretations called Herbrand interpretations, which have the following property:
if ϕ is satisfiable, then there is a Herbrand interpretation that satisfies ϕ
For simplicity, consider a signature $\Sigma:=\left\{\Sigma^{S}, \Sigma^{F}\right\}$ without equality, with one sort S (other than Bool), and assume the arguments of function symbols have sort S :

- For $f \in \Sigma^{F}$, either $\operatorname{sort}(f)=\langle S, \ldots, S\rangle$ or $\operatorname{sort}(f)=\langle S, \ldots, S$, Bool \rangle

Herbrand Interpretation: domain

The first thing that an interpretation needs is the domain of sort S
Given a formula ϕ. Let \mathcal{A} be the set of constant symbols in ϕ, and \mathcal{F} be the set of function symbols that have positive arities and return S
The Herbrand universe of ϕ, H_{ϕ}, is the set of well-sorted terms generated by \mathcal{F} from \mathcal{A} If there are no constant symbols, initialize \mathcal{A} with an arbitrary symbol a of sort S Example: Consider formula $\phi:=\forall x . \forall y . \Delta$, what is the Herbrand universe when:

- $\Delta:=\{\{p(a), \neg p(b), q(x)\},\{\neg p(b), \neg q(y)\}\}$
- $H_{\phi}=\{a, b\}$
- $\Delta:=\{\{\neg p(x, f(y))\},\{p(x, g(x))\}\}$
- $H_{\phi}=\{a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), \ldots\}$
- $\Delta:=\{\{\neg p(a, f(x, y))\},\{p(b, f(x, y))\}\}$
- $H_{\phi}=\{a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(a, f(a, a)), \ldots\}$

Herbrand Interpretation: functions

The Herbrand universe, H_{ϕ} is the domain of S in a Herbrand interpretation
Now that we have a domain, we need to define the function symbols:

- non-predicate functions: Define $a^{\mathcal{I}}$ as $a \in H_{\phi}$, define $f^{\mathcal{I}}(a)$ as $f(a) \in H_{\phi}$
- Predicate symbols: can be defined arbitrarily (i.e., arbitrary relations of the appropriate arities over H_{ϕ})

Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base
Given a formula α, a ground instance of α is the result of replacing every free variable in α with an element of the Herbrand universe H_{ϕ}
The Herbrand base for ϕ, B_{ϕ}, is the set of ground instances of atomic formulas in ϕ
Example: Consider the third example from the previous slide

$$
\begin{aligned}
\phi:= & \{\{\neg p(a, f(x, y))\},\{p(b, f(x, y))\}\} \\
H_{\phi}:= & \{a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(a, f(a, a)), \ldots\} \\
B_{\phi}:= & \{p(a, f(a, a)), p(a, f(a, b)), p(a, f(b, a)), p(a, f(b, b)), \ldots \\
& p(b, f(a, a)), p(b, f(a, b)), p(b, f(b, a)), p(b, f(b, b)) \ldots\}
\end{aligned}
$$

A predicate symbol in a Herbrand interpretation can be defined as a subset of B_{ϕ}, containing those instances of the predicate which evaluate to T
For example, $\{p(b, f(a, a)), p(b, f(a, b)), p(b, f(b, a)), p(b, f(b, b))\}$
Note: we call a formula/term that does not contain variables a ground formula/term

Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base
Given a formula α, a ground instance of α is the result of replacing every free variable in α with an element of the Herbrand universe H_{ϕ}
The Herbrand base for ϕ, B_{ϕ}, is the set of ground instances of atomic formulas in ϕ
Exercise: What is the Herbrand base of the following formula:

$$
\begin{array}{ll}
\phi:= & \{\{\neg p(x, f(y))\}\} \\
H_{\phi}:= & \{a, f(a), f(f(a)), \ldots\} \\
B_{\phi}:= & ?
\end{array}
$$

Submit your answers to
https://pollev.com/andreww095

Herbrand Models are Canonical

Theorem: if ϕ (a formula in clausal form) is satisfiable, then there is a Herbrand interpretation \mathcal{I} that satisfies ϕ

Note: \mathcal{I} (first-order) satisfies $\phi:=\forall \bar{x} . \Delta$ iff every ground instance of Δ is satisfied by \mathcal{I}
Proof sketch: Let J be an interpretation s.t. $J \vDash \phi$, we define a Herbrand interpretation \mathcal{I} based on J and show that $\mathcal{I} \vDash \phi$.

We only need to define $R^{\mathcal{I}}$ for each predicate symbol R in ϕ Let e^{J} be the evaluation function associated with J. Recall

- For each variable $v, e^{J}(v)=v^{J}$.
- If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then

$$
e^{J}\left(f t_{1}, \ldots, t_{n}\right)=f^{J}\left(e^{J}\left(t_{1}\right), \ldots, e^{J}\left(t_{n}\right)\right)
$$

We define $R^{\mathcal{I}}$ by the following subset of Herbrand base

$$
\left\{R\left(t_{1}, \ldots, t_{n}\right) \mid R^{J}\left(e^{J}\left(t_{1}\right), \ldots, e^{J}\left(t_{n}\right)\right)=\mathrm{T}\right\}
$$

One can then show that $\mathcal{I} \vDash \phi$.
Details can be found in Chap. 9.3 of "Mathematical Logic for Computer Science" by Ben-Ari
November 29, 2023

Herbrand's Theorem

We say a quantifier-free sentence is propositionally satisfiable if its boolean skeleton is satisfiable

Theorem: A formula $\phi:=\forall \bar{x} . \Delta$ is first-order satisfiable iff the set of all ground instances of Δ is (simultaneously) propositionally satisfiable.
Proof: Suppose ϕ is first-order satisfiable. Then there is some Herbrand interpretation \mathcal{I} s.t. $\mathcal{I} \vDash \phi$. For each ground instance $g r$ of an atomic formula in Δ, we associate it with a propositional variable $p_{g r}$. We give a variable assignment d over the set of all such propositional variables based on \mathcal{I}. In particular, $d\left(p_{g r}\right)=T$ iff $e^{\mathcal{I}}(g r)=T$.

We show that d propositionally satisfies any ground instance Δ_{0} of Δ.
By definition of first-order satisfiability, \mathcal{I} satisfies Δ_{0}, and for each (ground) clause C in Δ_{0}, there is a (ground) literal ℓ that is satisfied by \mathcal{I}. This means the propositional literal corresponding to ℓ must evaluate to T under d. Thus, d satisfies the boolean skeleton of C, and in turn, of Δ_{0}.

Herbrand's Theorem

Theorem: A formula $\phi:=\forall \bar{x} . \Delta$ is first-order satisfiable iff the set of all ground instances of Δ is (simultaneously) propositionally satisfiable.

Proof (continued): Conversely, suppose d is a variable assignment propositionally satisfying all ground instances of Δ.
We can define a Herbrand interpretation \mathcal{I} using the following subset of the Herbrand base: $\left\{g r \mid d\left(p_{g r}\right)=\mathrm{T}, g r \in B_{\phi}\right\}$

We claim that $\mathcal{I} \vDash \phi$. That is, any ground instance Δ_{0} is satisfied by \mathcal{I}.
This is true because for any (ground) clause C in Δ_{0}, there must be a literal ℓ whose corresponding propositional literal evaluates to T under d, which means ℓ is satisfied and in turn C satisfied.

Herbrand's Theorem

Compactness Theorem of Propositional Logic: a set of propositional logic formula is satisfiable iff every finite subset of it is satisfiable.

The following corollary follows from the Compactness Theorem.
Corollary: A formula $\phi:=\forall \bar{x} . \Delta$ is first-order satisfiable iff every finite set of ground instances of Δ is propositionally satisfiable.
Herbrand's Theorem (second form): A formula $\phi:=\forall \bar{x} . \Delta$ is first-order unsatisfiable iff some finite set of ground instances of Δ is propositionally unsatisfiable.

Herbrand's Theorem

Herbrand's Theorem (second form): A formula $\phi:=\forall \bar{x} . \Delta$ is first-order unsatisfiable iff some finite set of ground instances of Δ is propositionally unsatisfiable.

This leads naturally to a procedure for proving the unsatisfiability of ϕ
We can enumerate larger and larger sets of ground instances of Δ and test them for propositional satisfiability

If we find a set of ground instances that is propositionally unsatisfiable, then ϕ is first-order unsatisfiable

This process of generating ground instances to check for satisfiability is called quantifier instantiation

This is (basically) how quantifiers are handled by SMT solvers!
Note: if we guarantee that all finite sets of ground instances are eventually tried, then this gives us a semi-decision procedure for validity of first-order formulas

Quantifier Instantiation in SMT solvers

Quantifiers in formulas are generally handled by SMT solvers through instantiations capitalizing on their capability to handle large ground formulas

Note: we will focus on the case where the background theory is $T_{=}$, the theory of uninterpreted functions with equality

So far, we focused on the scenario of checking the satisfiability of a single formula in clausal form

Let us switch viewpoints and consider a more typical scenario in SMT: we want to check the satisfiability of a set of ground formulas E in conjunction with a set of quantified formulas Q (in clausal form)

To prove unsatisfiability, try to generate a set of ground formulas E^{\prime} by instantiating the universally quantified variables in Q in order to reach a contradiction with E

An instantiation can be defined by a substitution, a mapping from variables to ground terms

Quantifier Instantiation: Motivating Example

Suppose we want to prove

$$
f(h(a), b)=f(b, h(a))
$$

under the assumption that

$$
\forall x \cdot \forall y \cdot(f(x, y)=f(y, x))
$$

Presenting this as a satisfiability problem, we need to show that the following formula is unsatisfiable:

$$
\forall x . \forall y .(f(x, y)=f(y, x)) \quad \wedge \quad f(h(a), b) \neq f(b, h(a))
$$

What should we instantiate x and y with? $\{x \mapsto h(a), y \mapsto b\}$
Check $T_{=\text {-satisfiability }}$ of

$$
f(h(a), b)=f(b, h(a)) \quad \wedge \quad f(h(a), b) \neq f(b, h(a))
$$

DPLL(T)-Based SMT Solvers

DPLL(T)-Based SMT Solvers $+\forall$ Instantiation

DPLL(T)-Based SMT Solvers $+\forall$ Instantiation

T-Clauses F

DPLL(T)-Based SMT Solvers $+\forall$ Instantiation

Quantifier Instantiation: Motivating Example

We wanted to show that the following formula is unsatisfiable:

$$
\forall x . \forall y .(f(x, y)=f(y, x)) \quad \wedge \quad f(h(a), b) \neq f(b, h(a))
$$

One successful instantiation substitutes x with $h(a)$, and y with b In principle, to find a successful instantiation, we could enumerate the corresponding Herbrand universe, but it is too large.
It seems to be a good idea to limit ourselves to terms already in E

Quantifier Instantiation: Strategies

Let $\forall \bar{x} . \psi \wedge E$ be the formula that we attempt to prove to be unsatisfiable
A naïve strategy: instantiate \bar{x} with all the terms in E of the same sort
Can lead to an exponential number (in $|\bar{x}|$) of added ground terms
For example:

$$
\forall x . \forall y .(f(x, y)=f(y, x)) \quad \wedge \quad f(h(a), b) \neq f(b, h(a))
$$

x and y can be instantiated with $a, b, h(a), f(h(a), b), f(b, h(a))$, yielding 25 new predicates

Quantifier Instantiation: Strategies

A better strategy: instantiate \bar{x} to match existing terms in E

- For a quantified formula $\forall \bar{x} . \psi$, select subterms $\left\{t_{1}, \ldots, t_{n}\right\}$ in ψ that contain references to all variables in \bar{x}
- these terms are called triggers
- In $\forall x . \forall y .(f(x, y)=f(y, x))$, both $f(x, y)$ and $f(y, x)$ can be triggers
- Try to match a trigger tr to an existing ground term $g r$ in E
- Matching $f(x, y)$ to $f(h(a), b)$ yields the substitution $s=\{x \mapsto h(a), y \mapsto b\}$
- Check the satisfiability of $\psi[s] \wedge B$
- $\psi[s]$ denotes the ground formula resulting from substituting s for \bar{x} in ψ

Example

Suppose we want to prove

$$
b=c \rightarrow f(h(a), g(c))=f(g(b), h(a))
$$

under the same assumption that

$$
\forall x \cdot \forall y \cdot(f(x, y)=f(y, x))
$$

Cast in terms of satisfiability, we need to prove the unsatisfiability of

$$
\forall x \cdot \forall y \cdot(f(x, y)=f(y, x)) \wedge \quad b=c \quad \wedge \quad f(h(a), g(c)) \neq f(g(b), h(a))
$$

Select $f(x, y)$ as the trigger. Can match $f(x, y)$ to $f(h(a), g(c))$ with the substitution $\{x \mapsto h(a), y \mapsto g(c)\}$ or to $f(g(b), h(a))$ with $\{x \mapsto g(b), y \mapsto h(a)\}$. Now we check the $T_{=}$-satisfiability of

$$
\begin{aligned}
& f(h(a), g(c))=f(g(c), h(a)) \wedge \\
& f(g(b), h(a))=f(h(a), g(b)) \wedge \\
& b=c \quad \wedge \quad f(h(a), g(c)) \neq f(g(b), h(a))
\end{aligned}
$$

Example (cont.)

Now we check the $T_{=\text {-satisfiability }}$ of

$$
\begin{aligned}
& f(h(a), g(c))=f(g(c), h(a)) \wedge \\
& f(g(b), h(a))=f(h(a), g(b)) \wedge \\
& b=c \quad \wedge \quad f(h(a), g(c)) \neq f(g(b), h(a))
\end{aligned}
$$

Unsatisfiable: thus the instantiation is successful
In fact, the first substitution is already enough
How eagerly we should add the terms is a heuristic choice

Quantifier Instantiation: Strategies

Current strategy: instantiate \bar{x} to match existing terms in E
Sometimes, the instantiations necessary for proving unsatisfiability are not based on terms in the existing formulas

Consider the formula

$$
\forall x \cdot p(x, b) \wedge b=c \wedge \neg p(a, c)
$$

Suppose we select trigger $p(x, b)$, we cannot match it with any ground terms
A successful instantiation would be $p(a, b)$
A more flexible matching strategy (E -Matching): find a substitution s for trigger $t r$, such that $E \vDash=\operatorname{tr}[s]=g r$ for some ground term $g r$ in E

Need knowledge about equalities between terms in E, which can be obtained with the Congruence Closure algorithm

E-Matching: Challenges

- Too many instances
- Typical real problems: hundreds of \forall in Q, and thousands of terms in E
- Can add millions of ground instances
- Need heuristics to select triggers and control eagerness
- Incompleteness
- $(\forall x .(f(2 x-x)<x)) \wedge(f(a) \geq a)$

Without rewriting $2 x-x$ to x, E-Matching cannot find the correct instantiation

- $(\forall x . f(x)=f(g(x))) \wedge f(g(a))=a$

Can get stuck in infinite loops and cannot conclude sat

Beyond E-Matching

Challenges

- Too many instances
- Incompleteness

Many techniques have been proposed to tackle the above two challenges.
We briefly survey two of them:

- Conflict-based instantiation [Reynold'2014]
- Model-based instantiation [Ge'2009]

Conflict-based Instantiation

Search for one instance of one quantified formula in Q that makes E unsatisfiable

- $E=\{\neg P(a), \neg P(b), P(c), \neg R(b)\}$ and $Q=\{\forall x .(P(x) \vee R(x))\}$
- Since $E, P(b) \vee R(b) \vDash \perp$, returns $x \mapsto b$
- More generally, given $E, \forall \bar{x} . \phi$ returns s s.t. $E \vDash \neg \phi[s]$ or \varnothing otherwise
- Detecting such conflicts can be computationally expensive (NP-Complete)
- In practice, only look for "shallow" conflicts and avoid exponential behaviors

Reynolds et al. "Finding Conflicting Instances of Quantified Formulas in SMT", FMCAD, 2014

Model-based Instantiation

If E is T -satisfiable, build a candidate interpretation \mathcal{I} where $\mathcal{I} \vDash E$ check if M also satisfies Q using a quantifier-free satisfiability query

Gives us ability to answer "sat"

- $E=\{\neg P(a), P(b), \neg R(b), \neg R(c), R(a)\}$ and

$$
Q=\{\forall x .(P(x) \vee R(x))\}
$$

- $P^{\mathcal{I}}:=\operatorname{ite}(x=a, \perp, \operatorname{ite}(x=b, \operatorname{T}, \operatorname{ite}(x=c, \top, \top)))$

$$
R^{\mathcal{I}}:=\operatorname{ite}(x=a, T, \operatorname{ite}(x=b, \perp, \operatorname{ite}(x=c, \perp, \top)))
$$

- Check satisfiability of $\neg\left(P^{\mathcal{I}}(x) \vee R^{\mathcal{I}}(x)\right)$
- If unsatisfiable, \mathcal{I} also satisfies Q
- If satisfiable, refine the model with the counter-example found and try again

Ge and de Moura. "Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories", CAV, 2009

Quantifier Instantiation: Summary

In practice, all the aforementioned strategies are used. One possible order is the following:

1. Conflict-based instantiation
if successful, return UNSAT, otherwise, go to step 2
2. E-matching
check the resulting ground formulas E and construct candidate model \mathcal{I}
3. Model-based instantiation
check whether \mathcal{I} is a model for both E and Q
Other instantiation strategies exist:

- Counter-example guided:

Reynolds et al. "Counterexample-Guided Quantifier Instantiation for Synthesis in SMT", CAV 2015

- Enumeration-based:

Reynolds et al. "Revisiting Enumerative Instantiation", TACAS 2018

[^0]: Some of the slides are contributed by Andrew Reynolds.

