
CS257: Introduction to Automated Reasoning
Quantifier Instantiation



SMT solvers

• Traditionally:

- Efficient decision procedures for quantifier-free constraints over theories:
- Arithmetic
- Uninterpreted functions (UF)
- Bitvectors
- Arrays
- Datatypes
- More recently: strings, floating points, sets, relations, . . .

• In the past decade or so:

- Efficient (heuristic) techniques for quantified formulas as well
- Focus of this lecture.
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Applications of ∀ in SMT

Quantifiers are used for:

• Automated theorem proving:

- Background axioms: ∀x , y .(x + y = y + x)

• Software verification:

- Unfolding: ∀x .(foo(x) = bar(x + 1))
- Code contracts: ∀x .(pre(x)→ post(f (x)))
- Frame axioms: ∀x .(x > 0→ f (x) = f (x + 1))

• Function synthesis:

- Synthesis conjectures: ∀i ∶ input.∃o ∶ output.R(o, i)

• Planning:

- Specifications: ∃p ∶ plan.∀t ∶ time.R(p, t)
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Today

• Herbrand Theorem

• Quantifier Instantiation (DP Ch. 9.5)

- Trigger-based instantiation strategies
- Other instantiation strategies:

▸ conflict-based instantiation
▸ model-based instantiation

Some of the slides are contributed by Andrew Reynolds.
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Review: Clausal Form

We say a first-order logic formula is in Clausal Form if,

1. it is in PCNF;

2. it is closed (i.e., does not contain free variables); and

3. it only contains universal quantifiers.

Example: ∀y .∀z .(p(f (y)) ∧ ¬q(y , z))

Given any first-order logic sentence ϕ, one can transform ϕ into an equi-satisfiable formula ϕ′

in clausal form

Example: ∀x . (p(x)→ ∃y .q(x , y))

1. Eliminate implications: ∀x . (¬p(x) ∨ ∃y .q(x , y))

2. Skolemize (y ↦ fy(x)): ∀x . (¬p(x) ∨ q(x , fy(x)))
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First-order satisfiability

Skolemization reduces the problem of first-order satisfiability to first-order satisfiability of
formulas in clausal form

Herbrand’s Theorem will further reduce this (in a weaker sense) to propositional satisfiability

For now, assume we are dealing with formulas in clausal form
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Herbrand Interpretation

Given a Σ-formula ϕ, e.g.,
∀x . (¬p(x) ∨ q(x ,g(x)))

there is no easy way to describe the set of possible interpretations (e.g., the definitions of
p,q,g can be arbitrary)

We define canonical interpretations called Herbrand interpretations, which have the following
property:

if ϕ is satisfiable, then there is a Herbrand interpretation that satisfies ϕ

For simplicity, consider a signature Σ ∶= {ΣS ,ΣF} without equality, with one sort S (other than
Bool), and assume the arguments of function symbols have sort S :

• For f ∈ ΣF , either sort(f ) = ⟨S , . . . ,S⟩ or sort(f ) = ⟨S , . . . ,S ,Bool⟩

November 29, 2023 CS257 6 / 32



Herbrand Interpretation: domain

The first thing that an interpretation needs is the domain of sort S

Given a formula ϕ. Let A be the set of constant symbols in ϕ, and F be the set of function
symbols that have positive arities and return S

The Herbrand universe of ϕ, Hϕ, is the set of well-sorted terms generated by F from A

If there are no constant symbols, initialize A with an arbitrary symbol a of sort S

Example: Consider formula ϕ ∶= ∀x .∀y .∆, what is the Herbrand universe when:

• ∆ ∶= {{p(a),¬p(b),q(x)},{¬p(b),¬q(y)}}
- Hϕ = {a,b}

• ∆ ∶= {{¬p(x , f (y))},{p(x ,g(x))}}
- Hϕ = {a, f (a),g(a), f (f (a)), f (g(a)),g(f (a)),g(g(a)), . . .}

• ∆ ∶= {{¬p(a, f (x , y))},{p(b, f (x , y))}}
- Hϕ = {a,b, f (a, a), f (a,b), f (b, a), f (b,b), f (a, f (a, a)), . . .}
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Herbrand Interpretation: functions

The Herbrand universe, Hϕ is the domain of S in a Herbrand interpretation

Now that we have a domain, we need to define the function symbols:

• non-predicate functions: Define aI as a ∈ Hϕ, define f I(a) as f (a) ∈ Hϕ

• Predicate symbols: can be defined arbitrarily (i.e., arbitrary relations of the appropriate
arities over Hϕ)
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Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base

Given a formula α, a ground instance of α is the result of replacing every free variable in α
with an element of the Herbrand universe Hϕ

The Herbrand base for ϕ, Bϕ, is the set of ground instances of atomic formulas in ϕ

Example: Consider the third example from the previous slide

ϕ ∶= {{¬p(a, f (x , y))},{p(b, f (x , y))}}
Hϕ ∶= {a,b, f (a, a), f (a,b), f (b, a), f (b,b), f (a, f (a, a)), . . .}
Bϕ ∶= {p(a, f (a, a)),p(a, f (a,b)),p(a, f (b, a)),p(a, f (b,b)), . . .

p(b, f (a, a)),p(b, f (a,b)),p(b, f (b, a)),p(b, f (b,b)) . . .}
A predicate symbol in a Herbrand interpretation can be defined as a subset of Bϕ, containing
those instances of the predicate which evaluate to T

For example, {p(b, f (a, a)),p(b, f (a,b)),p(b, f (b, a)),p(b, f (b,b))}

Note: we call a formula/term that does not contain variables a ground formula/term
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Herbrand Bases and ground instances

An alternative way to view predicate symbols is through the lens of a Herbrand base

Given a formula α, a ground instance of α is the result of replacing every free variable in α
with an element of the Herbrand universe Hϕ

The Herbrand base for ϕ, Bϕ, is the set of ground instances of atomic formulas in ϕ

Exercise: What is the Herbrand base of the following formula:

ϕ ∶= {{¬p(x , f (y))}}
Hϕ ∶= {a, f (a), f (f (a)), . . .}
Bϕ ∶= ?

Submit your answers to

https://pollev.com/andreww095
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Herbrand Models are Canonical

Theorem: if ϕ (a formula in clausal form) is satisfiable, then there is a Herbrand interpretation
I that satisfies ϕ

Note: I (first-order) satisfies ϕ ∶= ∀x .∆ iff every ground instance of ∆ is satisfied by I

Proof sketch: Let J be an interpretation s.t. J ⊧ ϕ, we define a Herbrand interpretation I
based on J and show that I ⊧ ϕ.

We only need to define RI for each predicate symbol R in ϕ Let eJ be the evaluation function
associated with J. Recall

• For each variable v , eJ(v) = v J .

• If t1,. . . ,tn are terms and f is an n-ary function symbol, then
eJ(ft1, . . . , tn) = f J(eJ(t1), . . . , eJ(tn)).

We define RI by the following subset of Herbrand base

{R(t1, . . . , tn) ∣ RJ(eJ(t1), . . . , eJ(tn)) = T}

One can then show that I ⊧ ϕ.

Details can be found in Chap. 9.3 of “Mathematical Logic for Computer Science” by Ben-Ari
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Herbrand’s Theorem

We say a quantifier-free sentence is propositionally satisfiable if its boolean skeleton is
satisfiable

Theorem: A formula ϕ ∶= ∀x .∆ is first-order satisfiable iff the set of all ground instances of ∆
is (simultaneously) propositionally satisfiable.

Proof: Suppose ϕ is first-order satisfiable. Then there is some Herbrand interpretation I s.t.
I ⊧ ϕ. For each ground instance gr of an atomic formula in ∆, we associate it with a
propositional variable pgr . We give a variable assignment d over the set of all such
propositional variables based on I. In particular, d(pgr) = T iff eI(gr) = T.

We show that d propositionally satisfies any ground instance ∆0 of ∆.

By definition of first-order satisfiability, I satisfies ∆0, and for each (ground) clause C in ∆0,
there is a (ground) literal ℓ that is satisfied by I. This means the propositional literal
corresponding to ℓ must evaluate to T under d . Thus, d satisfies the boolean skeleton of C ,
and in turn, of ∆0.
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Herbrand’s Theorem

Theorem: A formula ϕ ∶= ∀x .∆ is first-order satisfiable iff the set of all ground instances of ∆
is (simultaneously) propositionally satisfiable.

Proof (continued): Conversely, suppose d is a variable assignment propositionally satisfying all
ground instances of ∆.

We can define a Herbrand interpretation I using the following subset of the Herbrand base:
{gr ∣ d(pgr) = T,gr ∈ Bϕ}

We claim that I ⊧ ϕ. That is, any ground instance ∆0 is satisfied by I.

This is true because for any (ground) clause C in ∆0, there must be a literal ℓ whose
corresponding propositional literal evaluates to T under d , which means ℓ is satisfied and in
turn C satisfied. 2
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Herbrand’s Theorem

Compactness Theorem of Propositional Logic: a set of propositional logic formula is satisfiable
iff every finite subset of it is satisfiable.

The following corollary follows from the Compactness Theorem.

Corollary: A formula ϕ ∶= ∀x .∆ is first-order satisfiable iff every finite set of ground instances of
∆ is propositionally satisfiable.

Herbrand’s Theorem (second form): A formula ϕ ∶= ∀x .∆ is first-order unsatisfiable iff some
finite set of ground instances of ∆ is propositionally unsatisfiable.
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Herbrand’s Theorem

Herbrand’s Theorem (second form): A formula ϕ ∶= ∀x .∆ is first-order unsatisfiable iff some
finite set of ground instances of ∆ is propositionally unsatisfiable.

This leads naturally to a procedure for proving the unsatisfiability of ϕ

We can enumerate larger and larger sets of ground instances of ∆ and test them for
propositional satisfiability

If we find a set of ground instances that is propositionally unsatisfiable, then ϕ is first-order
unsatisfiable

This process of generating ground instances to check for satisfiability is called quantifier
instantiation

This is (basically) how quantifiers are handled by SMT solvers!

Note: if we guarantee that all finite sets of ground instances are eventually tried, then this
gives us a semi-decision procedure for validity of first-order formulas
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Quantifier Instantiation in SMT solvers

Quantifiers in formulas are generally handled by SMT solvers through instantiations

capitalizing on their capability to handle large ground formulas

Note: we will focus on the case where the background theory is T=, the theory of uninterpreted
functions with equality

So far, we focused on the scenario of checking the satisfiability of a single formula in clausal
form

Let us switch viewpoints and consider a more typical scenario in SMT: we want to check the
satisfiability of a set of ground formulas E in conjunction with a set of quantified formulas Q
(in clausal form)

To prove unsatisfiability, try to generate a set of ground formulas E ′ by instantiating the
universally quantified variables in Q in order to reach a contradiction with E

An instantiation can be defined by a substitution, a mapping from variables to ground terms
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Quantifier Instantiation: Motivating Example

Suppose we want to prove
f (h(a),b) = f (b,h(a))

under the assumption that
∀x .∀y .(f (x , y) = f (y , x))

Presenting this as a satisfiability problem, we need to show that the following formula is
unsatisfiable:

∀x .∀y .(f (x , y) = f (y , x)) ∧ f (h(a),b) ≠ f (b,h(a))

What should we instantiate x and y with? {x ↦ h(a), y ↦ b}

Check T=-satisfiability of

f (h(a),b) = f (b,h(a)) ∧ f (h(a),b) ≠ f (b,h(a))

November 29, 2023 CS257 17 / 32



DPLL(T)-Based SMT Solvers
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DPLL(T)-Based SMT Solvers + ∀ Instantiation

When M contains quantified
formulas...
...cannot use quantifier-free solver
for establishing M is sat
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DPLL(T)-Based SMT Solvers + ∀ Instantiation

Ground formulas:
e.g., f (a) = b,P(a) = ⊺

Quantified formulas:
e.g., ∀x .P(x)
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DPLL(T)-Based SMT Solvers + ∀ Instantiation
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Quantifier Instantiation: Motivating Example

We wanted to show that the following formula is unsatisfiable:

∀x .∀y .(f (x , y) = f (y , x)) ∧ f (h(a),b) ≠ f (b,h(a))

One successful instantiation substitutes x with h(a), and y with b

In principle, to find a successful instantiation, we could enumerate the corresponding Herbrand
universe, but it is too large.

It seems to be a good idea to limit ourselves to terms already in E
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Quantifier Instantiation: Strategies

Let ∀x .ψ ∧ E be the formula that we attempt to prove to be unsatisfiable

A näıve strategy: instantiate x with all the terms in E of the same sort

Can lead to an exponential number (in ∣x ∣) of added ground terms

For example:
∀x .∀y .(f (x , y) = f (y , x)) ∧ f (h(a),b) ≠ f (b,h(a))

x and y can be instantiated with a,b,h(a), f (h(a),b), f (b,h(a)), yielding 25 new predicates
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Quantifier Instantiation: Strategies

A better strategy: instantiate x to match existing terms in E

• For a quantified formula ∀x .ψ, select subterms {t1, . . . , tn} in ψ that contain references to
all variables in x

- these terms are called triggers
- In ∀x .∀y .(f (x , y) = f (y , x)), both f (x , y) and f (y , x) can be triggers

• Try to match a trigger tr to an existing ground term gr in E

- Matching f (x , y) to f (h(a),b) yields the substitution s = {x ↦ h(a), y ↦ b}

• Check the satisfiability of ψ[s] ∧B

- ψ[s] denotes the ground formula resulting from substituting s for x in ψ
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Example

Suppose we want to prove

b = c → f (h(a),g(c)) = f (g(b),h(a))

under the same assumption that

∀x .∀y .(f (x , y) = f (y , x))

Cast in terms of satisfiability, we need to prove the unsatisfiability of

∀x .∀y .(f (x , y) = f (y , x)) ∧ b = c ∧ f (h(a),g(c)) ≠ f (g(b),h(a))

Select f (x , y) as the trigger. Can match f (x , y) to f (h(a),g(c)) with the substitution
{x ↦ h(a), y ↦ g(c)} or to f (g(b),h(a)) with {x ↦ g(b), y ↦ h(a)}. Now we check the
T=-satisfiability of

f (h(a),g(c)) = f (g(c),h(a)) ∧
f (g(b),h(a)) = f (h(a),g(b)) ∧

b = c ∧ f (h(a),g(c)) ≠ f (g(b),h(a))
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Example (cont.)

Now we check the T=-satisfiability of

f (h(a),g(c)) = f (g(c),h(a)) ∧
f (g(b),h(a)) = f (h(a),g(b)) ∧

b = c ∧ f (h(a),g(c)) ≠ f (g(b),h(a))

Unsatisfiable: thus the instantiation is successful

In fact, the first substitution is already enough

How eagerly we should add the terms is a heuristic choice
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Quantifier Instantiation: Strategies

Current strategy: instantiate x to match existing terms in E

Sometimes, the instantiations necessary for proving unsatisfiability are not based on terms in
the existing formulas

Consider the formula
∀x .p(x ,b) ∧ b = c ∧ ¬p(a, c)

Suppose we select trigger p(x ,b), we cannot match it with any ground terms

A successful instantiation would be p(a,b)

A more flexible matching strategy (E-Matching): find a substitution s for trigger tr , such that
E ⊧= tr[s] = gr for some ground term gr in E

Need knowledge about equalities between terms in E , which can be obtained with the
Congruence Closure algorithm
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E-Matching: Challenges

• Too many instances

- Typical real problems: hundreds of ∀ in Q, and thousands of terms in E
- Can add millions of ground instances
- Need heuristics to select triggers and control eagerness

• Incompleteness

- (∀x .(f (2x − x) < x)) ∧ (f (a) ≥ a)
Without rewriting 2x − x to x , E-Matching cannot find the correct instantiation

- (∀x .f (x) = f (g(x))) ∧ f (g(a)) = a
Can get stuck in infinite loops and cannot conclude sat
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Beyond E-Matching

Challenges

• Too many instances

• Incompleteness

Many techniques have been proposed to tackle the above two challenges.
We briefly survey two of them:

• Conflict-based instantiation [Reynold’2014]

• Model-based instantiation [Ge’2009]
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Conflict-based Instantiation

Search for one instance of one quantified formula in Q that makes E unsatisfiable

• E = {¬P(a),¬P(b),P(c),¬R(b)} and
Q = {∀x .(P(x) ∨ R(x))}

• Since E ,P(b) ∨ R(b) ⊧ �, returns x ↦ b

• More generally, given E ,∀x .ϕ
returns s s.t. E ⊧ ¬ϕ[s] or ∅ otherwise

• Detecting such conflicts can be computationally expensive (NP-Complete)

• In practice, only look for “shallow” conflicts and avoid exponential behaviors

Reynolds et al. “Finding Conflicting Instances of Quantified Formulas in SMT”, FMCAD, 2014
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Model-based Instantiation

If E is T-satisfiable, build a candidate interpretation I where I ⊧ E

check if M also satisfies Q using a quantifier-free satisfiability query

Gives us ability to answer “sat”

• E = {¬P(a),P(b),¬R(b),¬R(c),R(a)} and
Q = {∀x .(P(x) ∨ R(x))}

• PI ∶= ite(x = a,�,ite(x = b,⊺,ite(x = c ,⊺,⊺)))
RI ∶= ite(x = a,⊺,ite(x = b,�,ite(x = c ,�,⊺)))

• Check satisfiability of ¬(PI(x) ∨ RI(x))
• If unsatisfiable, I also satisfies Q

• If satisfiable, refine the model with the counter-example found and try again

Ge and de Moura. “Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories”,
CAV, 2009
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Quantifier Instantiation: Summary

In practice, all the aforementioned strategies are used. One possible order is the following:

1. Conflict-based instantiation
if successful, return UNSAT, otherwise, go to step 2

2. E-matching
check the resulting ground formulas E and construct candidate model I

3. Model-based instantiation
check whether I is a model for both E and Q

Other instantiation strategies exist:

• Counter-example guided:
Reynolds et al. “Counterexample-Guided Quantifier Instantiation for Synthesis in SMT”,
CAV 2015

• Enumeration-based:
Reynolds et al. “Revisiting Enumerative Instantiation”, TACAS 2018
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