
CS257: Introduction to Automated Reasoning
QF LRA



Overview

SMT solvers can be used to solve arithmetic problems

Linear Programs (LPs) are a particularly interesting class of arithmetic problems,
with stand-alone solvers

Many interesting applications: robotic planning, formal verification, operations research

Some of the slides are contributed by Guy Katz.
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Outline

• QF LRA

• Linear Programming

• The Simplex algorithm

Readings: DP 5.1-5.2 and optionally...

=
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Linear Programs: Historical Context

• Dates back at least to 19th century

- A procedure now called Fourier-Motzkin elimination first proposed by Joseph Fourier in
1826 and re-discovered by Theodore Motzkin in 1936

• More interests during and after WW2

- 1939: Leonid Kantorovich formulated the problem of Linear Programming and
developed a decision procedure (won Nobel prize in economics in 1975)

- 1946: George Dantzig (Stanford professor 1966–2005) invented the Simplex method
▸ Simplex still used extensively (in Operations Research)
▸ Our focus today!

• 1979: first shown to be solvable in polynomial time by Leonid Khachiyan

- 1984: Interior-point method invented by Narendra Karmarkar
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Review: Theory of Real Arithmetics (TRA)

Equality: Yes

ΣS = {R}
ΣF = {+,−,∗,≤,qi for each rational number constant i}
S is the class of structures that interprets R as the set of real numbers, and the
functions in the usual way ( sort(qi) = ⟨R⟩)
Quantifier-free linear real arithmetic (QF LRA): 1) no quantifiers; 2) ∗ can only appear
if at least one of the two operands is a rational constant.

Many SMT solvers (e.g., Z3, cvc5) implement Simplex as the theory solver for TRA
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Linear Programming

A linear programming (LP) instance includes:

• An m × n matrix A called the constraint matrix

• An m-dimensional vector b

• An n-dimensional vector c (the objective function)

The goal: find a solution x that maximizes cT x subject to the linear inequality
constraints Ax ≤ b
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Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

Here:

x = [x1
x2
] A = [1 1

2 −1] b = [ 3−5] c = [−1
2
]

Find x that maximizes cT x , subject to Ax ≤ b
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Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

If a particular assignment of x satisfies Ax ≤ b, we call it a feasible solution

Otherwise, it is an infeasible solution

Is ⟨0,0⟩ a feasible solution?

Is ⟨−2,1⟩ a feasible solution?

For a given assignment of x , the value of cT x is the objective value (or cost) of x

What is the objective value of ⟨−2,1⟩?
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Example and Terminology

A feasible solution with a maximal objective value (over all feasible solutions) is called
an optimal solution

If a linear program has no feasible solutions, the linear program is infeasible

If the optimal solution’s objective value is ∞, the linear program is called unbounded
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Geometric Interpretation

For an m × n constraint matrix A, the set of points P = {x ∣ Ax ≤ b} form a convex
polytope in n-dimensional space

Polytope: the generalization of polyhedron from 3 dimensional space to higher
dimensions

Convexity: for all v1, v2 ∈ Rn, if v1, v2 ∈ P,
then for all λ ∈ [0,1], λv1 + (1 − λ)v2 ∈ P
In other words, every point on the line seg-
ment connecting two points in P is also in
P

Goal: find a point in the polytope that max-
imizes cT x
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Geometric Interpretation

The LP is infeasible if the polytope is empty

The LP is unbounded if the polytope is open in the direction of the objective function

The optimal solution for a bounded LP must lie on a vertex of the polytope
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Satisfiability as Linear Programming

Goal: use LP to check the satisfiability of quantifier-free conjunctive TRA-formulas

Step 1: convert equalities to inequalities

A TLRA-equality can be written in the form aT xi = b
We rewrite this as aT xi ≥ b ∧ aT xi ≤ b
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Satisfiability as Linear Programming

Goal: use LP to check the satisfiability of quantifier-free conjunctive TRA-formulas

Step 2: handle strict inequalities

A TLRA-literal is of the form aT xi ≤ b or ¬aT xi ≤ b
aT xi ≤ b is already in the desired form

For the latter:
¬aT xi ≤ b
⇔ aT xi > b
⇔ −aT xi < −b
⇔ −aT xi + y ≤ −b ∧ y > 0

Note: y is a new variable and the same y is used in all atoms

Example: What is the result of rewriting ¬(2x1 − x2 ≤ 3)?
Now, the formula is of the form Ax ≤ b ∧ y > 0
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Satisfiability as Linear Programming

Step 3: To check the satisfiability of Ax ≤ b ∧ y > 0, encode the following LP:

Maximize y subject to Ax ≤ b
The formula is satisfiable if and only if the optimal value is positive

Methods for solving LPs:

• Ellipsoid method (Khachian, 1979) Polynomial time

• Interior-point algorithm (Karmarkar, 1984) Polynomial time

• Simplex algorithm (Dantzig, 1949) Exponential time (probably)

Still, Simplex remains the most popular
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Standard Form

The general form of LP is to maximize y subject to a system of inequalities.

However, the algorithm is easier to present if we make the additional assumption that
all variables are non-negative:

maximize
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1,2, . . . ,n
We call this the standard form.

The algorithm we present is still general because any LP can be transformed to
standard form.
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Standard Form

maximize
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1,2, . . . ,n
Running example:

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0
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Slack Variables
Observe the first equation

2x1 + 3x2 + x3 ≤ 5

Define a new variable to represent the slack:

x4 = 5 − 2x1 − 3x2 − x3, x4 ≥ 0

Do this to every each constraint so everything
becomes equalities

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

Define a new variable to represent the objective value:

z = 5x1 + 4x2 + 3x3
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Slack Variables

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

⇒

max z

s.t. x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

x1, x2, x3, x4, x5, x6 ≥ 0
New variables are called slack variables

Optimal solution remains optimal for the new problem
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The Simplex Strategy

• Start with a feasible solution

- For our example, set all original variables to 0
- x4 = 5, x5 = 11, x6 = 8, x1, x2, x3, z = 0

• Iteratively improve the objective value

- Go from x to x ′ only if z(x) ≤ z(x ′)

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 as is

• x1 ↦ 1⇒ z ↦ 5

• x1 ↦ 2⇒ z ↦ 10

• x1 ↦ 3⇒ z ↦ 15

But x4, x5, x6 become negative now, so the solution is no longer feasible
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The Simplex Strategy

Moral of the story:

• Can’t increase x1 too much

• Increase it as much as possible, without harming feasibility

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

⇒ x1 ≤ 5
2 , x1 ≤

11
4 , x1 ≤

8
3

Select the tightest bound, x1 ≤ 5
2

• New assignment:x1 = 5
2 , x2 = x3 = x4 = 0, x5 = 1, x6 =

1
2

• This gives z = 25
2 , which is indeed an improvement
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The Simplex Strategy
Currently, x1 = 5

2 , x2 = x3 = x4 = 0, x5 = 1, x6 =
1
2

and z = 25
2

How do we continue?
For the first iteration we had:

• A feasible solution ✓
• An equation system, where

- variables with positive value are expressed in
terms of variables with 0 values

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property?

Need to update the equations
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The Simplex Strategy

What should we change?

• Initially: x1 was 0, x4 was positive

• Now: x4 is 0, x1 is positive

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3Isolate x1, eliminate from right-hand-side

x4 = 5 − 2x1 − 3x2 − x3 ⇒ x1 = 5
2 −

3
2x2 −

1
2x3 −

1
2x4

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

⇒

x1 = 5
2 −3

2
x2 −

1

2
x3 −

1

2
x4

x5 = 1 +5x2 + 2x4

x6 = 1
2 +1

2
x2 −

1

2
x3 +

3

2
x4

z = 25
2 −7

2
x2 +

1

2
x3 −

5

2
x4
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The Simplex Strategy

How can we improve z further?

• Option 1: decrease x2 or x4
but we can’t since x2, x4 ≥ 0

• Option 2: increase x3
By how much?

x1 = 5
2 −3

2
x2 −

1

2
x3 −

1

2
x4

x5 = 1 +5x2 + 2x4

x6 = 1
2 +1

2
x2 −

1

2
x3 +

3

2
x4

z = 25
2 −7

2
x2 +

1

2
x3 −

5

2
x4

Bounds of x3: x3 ≤ 5, x3 ≤ 1, x3 ≤∞
So we increase x3 to 1

• New assignment:x1 = 2, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0
• This gives z = 13, which is again an improvement
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The Simplex Strategy

As before, we switch x6 and x3, and eliminate x3 from right-hand-side.

x1 = 5
2 −3

2
x2 −

1

2
x3 −

1

2
x4

x5 = 1 +5x2 + 2x4

x6 = 1
2 +1

2
x2 −

1

2
x3 +

3

2
x4

z = 25
2 −7

2
x2 +

1

2
x3 −

5

2
x4

⇒

x1 = 2 −2x2 − 2x4 + x6

x5 = 1 +5x2 + 2x4

x3 = 1 +x2 + 3x4 − 2x6

z = 13 −3x2 − x4 − x6
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The Simplex Strategy

Can we improve z further?

• No, because x2, x4, x6 ≥ 0
• And all appear with negative signs in the
objective function

x1 = 2 −2x2 − 2x4 + x6

x5 = 1 +5x2 + 2x4

x3 = 1 +x2 + 3x4 − 2x6

z = 13 −3x2 − x4 − x6

So we are done, and maximal value of z is 13

Optimal solution is x1 = 2, x2 = 0, x3 = 1, x4 = 0
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The Simplex Algorithm

maximize
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1,2, . . . ,n
1. Introduce slack variables xn+1, . . . , xn+m

2. Set xn+i = bi −∑n
j=1 aijxj

3. Start with initial feasible solution x0

4. If some addends in the current objective function have positive coefficients, update the
feasible solution (to improve the objective value). Otherwise, the current solution is the
optimal.

5. Update the equations

6. Go to step 4
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Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated
This computational process of constructing the
new equation system is called pivoting

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

Invariants:

• Number of equations (m) never changes

• Variables are eiter left hand side or right hand side, never both

- Left hand side variables are called basic
- Right hand side variables are called non-basic

• Non-basic variables always pressed against their bounds (always 0)

• Basic variable assignment determined by non-basic assignment and equations
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Updating the Equations: Pivoting

The set of basic variables is called the basis

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3
In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound
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Tableau and Implementation

We have presented the equation system as a “dictionary”

A more popular version is called a tableau:

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

⇒

x1 x2 x3 x4 x5 x6 RHS

2 3 1 1 0 0 5

4 1 2 1 1 0 11

3 4 2 1 0 1 8

5 4 3 0 0 0 0

The pivoting process can be understood as a series of matrix operations
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Some Pitfalls

Possible problems of the procedure that we described so far:

• Initialization: how to obtain an initial feasible solution?

• Termination: can we encounter an endless sequence of dictionaries without
reaching an optimal z?
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Pitfalls: initialization

maximize
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1,2, . . . ,n
Easy when all bi ’s are non-negative

What can we do for negative bi ’s?
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Pitfalls: initialization

Solution: switch to an auxiliary problem with a known feasible solution

maximize
n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1,2, . . . ,n
becomes

minimize x0

s.t.
⎛
⎝

n

∑
j=1

aijxj
⎞
⎠
− x0 ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 0,1,2, . . . ,n
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Pitfalls: initialization

minimize x0

s.t.
⎛
⎝

n

∑
j=1

aijxj
⎞
⎠
− x0 ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 0,1,2, . . . ,n

For the auxiliary problem, a feasible solution is easy to find: set x1, . . . , xn = 0, and make x0
sufficiently large

Original problem has a solution if and only if the optimal solution for the auxiliary problem has
x0 = 0
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Initialization: example
max x1 + 2x2

s.t. 2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4

x1, x2 ≥ 0

⇒

max −x0
s.t. 2x1 − 3x2 − x0 ≤ −2

4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

Initial feasible solution: x0 = 4, x1 = 0, x2 = 0
The dictionary of the auxilliary problem:

x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0
z = −x0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4
z = −4 − 4x1 + x2 −x4
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The Two Steps of Simplex

Traditionally, the optimization problem is divided into two phases:

Phase I: Find a feasible solution

Phase II: Optimize the objective function

But behind the scenes, there is only Phase II

November 8, 2023 CS257 34 / 41



Pitfalls: Termination

Recall the goal of every iteration is to increase z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?
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Pitfalls: Terminations

Theorem: if the simplex method fails to terminate, it must be cycling (i.e., same
dictionary is repeated infinitely often

Proof sketch:

1. there are only finitely many bases;

2. each bases uniquely defines the dictionary;

3. Therefore, there are only finitely many values of z to try

If simplex is cycling, then z has to stop increasing
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Degenerate Pivots

Consider the following case:

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but its value cannot increase

So the value of z doesn’t change after this iteration

A pivot is called degenerate iff it does not change the objective value

Note: empirically rare in practice

Cycling can only occur in the presence of degenerate pivot.
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Pivoting Strategies

There exist variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

Example: z = −5x1 − 3x2 + 4x3 + 40x4

The entering variable is: x3

Leaving variable: still the one imposing the tightest constraint, but break tie by
picking the smaller subscript

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not
prevent cycling

When cycling is detected: switch to Bland’s rule for a while

Complexity: the common strategies all have worse-case exponential time
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Possible optimizations

• More sophisticated pivoting strategy

• Use rational number representation (to handle numerical instability)

• Handle general Linear Program (variables can have non-zero lower bounds and/or
finite upper bounds)

• Extract irreducible infeasible subset in case of infeasibility (theory explanations)

• ...
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Application: Neural Network Verification

Property to verify: ∀x1.x2.((x1 ∈ [−2,1] ∧ x2 ∈ [−2,2])→ y1 < y2)

1. Encoding of the neural network ϕn (linear + ReLUs):

r1b = x1 + x2 r2b = 2x1 − x2

y1 = −r1f + r2f y2 = r1f − r2f

(r1b ≤ 0 ∧ r1f = 0) ∨ (r1b ≥ 0 ∧ r1f = r1b)
(r2b ≤ 0 ∧ r2f = 0) ∨ (r2b ≥ 0 ∧ r2f = r2b)

2. Encoding of the the property ϕp:

Submit your answer to https://pollev.com/andreww095

3. Property holds iff ϕn ∧ ϕp is unsatisfiable
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Practical properties

• Robustness property: ∀x ′, ∥x − x ′∥ < ϵ⇒ ∥N(x) −N(x ′)∥ < δ

“There is no adversarial input within ϵ
distance”

• Reachability property: ∀x , x ∈ [xl , xu]⇒ y ∈ [yl , yu]

“Whenever intruder is near and to the
right advise strong left.”

A lot of attentions in recent years.
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