CS 257: Introduction to Automated Reasoning

Model Checking, Bounded Model Checking, K-Induction, Interpolation

Outline

- What is Model Checking?
- Modeling: Transition Systems
- Specification: Linear Temporal Logic
- Historical Verification Approaches
- Explicit-state
- BDDs
- SAT/SMT-based Verification Approaches
- Bounded Model Checking
- K-Induction
- Inductive Invariants
* Many of the slides today are contributed by Makai Mann.

What is Model Checking?

- Approach for verifying the temporal behavior of a system
- Model: Representation of the system
- Specification: High-level desired property of system
- Considers infinite sequences

Modeling: Transition System

- Model checking typically operates over Transition Systems
- A (symbolic) state machine
- A Transition System is $\langle S, I, T\rangle$
- S : a set of states
- I: a set of initial states (sometimes use Init instead of I for clarity)
- T : a transition relation: $T \subseteq S \times S$
- $T\left(s_{0}, s_{1}\right)$ holds when there is a transition from s_{0} to s_{1}

Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
- A state is an assignment to all variables
- A Transition System is $\langle V, I, T\rangle$
- V : a set of state variables, V^{\prime} denotes next state variables
- I: a set of initial states
- T : a transition relation
- $T\left(v_{0}, \ldots, v_{n}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right)$ holds when there is a transition
- Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
- E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

- 2 variables: $V=\left\{v_{0}, v_{1}\right\}$
- $S_{0}:=\neg v_{0} \wedge \neg v_{1}, S_{1}:=\neg v_{0} \wedge v_{1}$
- $S_{2}:=v_{0} \wedge \neg v_{1}, \quad S_{3}:=v_{0} \wedge v_{1}$
- Transition relation

$$
\begin{aligned}
& \left(\neg v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(\left(\neg v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \vee\left(v_{0}^{\prime} \wedge \neg v_{1}^{\prime}\right)\right) \wedge \\
& \left(\neg v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right)
\end{aligned}
$$

Modeling: Transition System Executions

- An execution is a sequence of states that respects I in the first state and T between every adjacent pair
- $\pi:=s_{0} s_{1} \ldots s_{n}$ is a finite sequence if $I\left(s_{0}\right) \wedge \wedge_{i=1}^{n} T\left(s_{i-1}, s_{i}\right)$

Meta Note: State Machine vs Execution Diagrams

State Machine uses capitals

Symbolic execution uses lowercase

Concrete Execution:

$$
s 0=S 0, s 1=S 2, s 2=S 3, s 3=S 3
$$

Specification: Linear Temporal Logic (LTL)

- Notation: M ₹ f
- Transition system model, M, entails LTL property, f, for ALL possible paths
- i.e. LTL is implicitly universally quantified
- Other logics include
- CTL: computational tree logic (branching time)
- CTL*: combination of LTL and CTL
- MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic (LTL)

- Atomic state property $P \subseteq S$:
- Holds iff $s_{0} \in P$

- Next P: $X(P)$
- P holds Next time
- Also written op
- True iff the next state meets property P

- Invariant $\mathrm{P}: \mathrm{G}(\mathrm{P})$
- P Globally holds
- Also written \square p
- True iff every reachable state meets property P

Specification: Linear Temporal Logic

- Eventually P: F(P)
- P holds in the Future
- Also written $\diamond p$

- True iff P eventually holds
- P1 Until P2: P1 U P2
- P1 holds until P2 holds
- True iff P1 holds up until (but not
 necessarily including) a state where P2 holds
- P2 must hold at some point

Specification: Linear Temporal Logic

- LTL operators can be composed
- $G(R e q \Rightarrow F(A c k))$
- Every request eventually acknowledged
- $G(F($ DeviceEnabled $))$
- The device is enabled infinitely often (from every state, it's eventually enabled again)
- $F(G(\neg$ Initializing $))$
- Eventually it's not initializing
- E.g. there is some initialization procedure that eventually ends and never restarts

Specification: Safety vs. Liveness

- Safety: "something bad does not happen"
- State invariant, e.g. G (ᄀbad)
- Liveness: "something good eventually happens"
- Eventuality, e.g. GF (good)
- Fairness conditions
- Fair traces satisfy each of the fairness conditions infinitely often
- E.g. only fair if it doesn't delay acknowledging a request forever
- Every property can be written as a conjunction of a safety and liveness property

Specification: Liveness to Safety

- Can reduce liveness to safety checking
- For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking, Electronic Notes in Theoretical Computer Science. 2002

- Several approaches for first-order logic
- From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

- Tableaux-style state exploration
- Form of depth-first search
- Many clever tricks for reducing search space
- Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

- Binary Decision Diagrams (BDDs)
- Manipulate sets of states symbolically
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model Checking: 10^{20} States and beyond
- Great BDD resource:
http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenz i99bdd.pdf

Historical Verification Approaches: BDDs

Binary Decision Diagram

- Represent Boolean formula as a decision diagram
- Example: $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)$
- Can be much more succinct than other representations

Historical Verification Approaches: BDDs

BDD Operators

- All Boolean operators implemented recursively
- These two operators are sufficient

Fig. 2-7. AND-Operation between $x_{1} \vee x_{2}$ and $x_{2} \neg x_{3}$

BDDs: Cofactoring

$$
f(x):=\left(\left.x \wedge f\right|_{x}\right) \vee\left(\left.\neg x \wedge f\right|_{\neg x}\right)
$$

- $\left.f\right|_{\neg x_{2}}$ for BDD f is fixing x_{2} to be negative

Credit for Example: Introduction to Formal Hardware Verification - Thomas Kropf

BDD Image Computation

- Current reachable states are BDD R
- Over variable set V
- Compute next states with:
- $N:=\exists V T\left(V, V^{\prime}\right) \wedge R(V)$

BDD image computation is based on the idea that all reachable next states are either already in \mathbf{R} or they are the result of applying the transition function to some set of states V in R to reach the set of states V^{\prime}.

- Existential is implemented cofactoring: $\exists x_{i} . f\left(\ldots, x_{i}, \ldots\right):=f(\ldots, F, \ldots) \vee$ $f(\ldots, T, \ldots)$
- Grow reachable states
- $R=R \vee N\left[V^{\prime} / V\right]$

Convert next state variables V' to state variables V

- Map next-state variables to current state, then add to reachable states

BDD-based model checking

- Start with $R=$ Init
- Keep computing image and growing reachable states
- Stop when there's a fixpoint (reachable states not growing)
- Can handle $\sim 10^{20}$ states
- More with abstraction techniques and compositional model checking

BDD: Variable Ordering

- Good variable orderings can be exponentially more compact
- Finding a good ordering is NP-complete
- There are formulas that have no non-exponential ordering

SAT-based model checking

- Edmund Clarke
- One of the founders of model checking
- SAT solving taking off
- Clarke hired several post-doctoral students to try to use SAT as an oracle to solve model checking problems
- Struggled for a while to find a general technique
- What if you give up completeness? \rightarrow Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

- Sacrifice completeness for quick bug-finding
- Unroll the transition system
- Each variable $v \in V$ gets a new symbol for each time-step, e.g. v_{k} is v at time k
- Space-Time duality: unrolls temporal behavior into space
- For increasing values of k, check:
- $I\left(s_{0}\right) \wedge \wedge_{i=1}^{k} T\left(s_{i-1}, s_{i}\right) \wedge \neg P\left(s_{k}\right)$
- If it is ever SAT, return FALSE
- Can construct a counter-example trace

BMC Graphically

s_{0} must be an initial state
Check if it can violate the property at time k

Bounded Model Checking: Completeness

- Completeness condition: reaching the diameter
- Diameter: d
- Depth needed to unroll to such that every possible state is reachable in d steps or less

$$
\begin{align*}
& r d(M):=\min \left\{\mid \forall s_{0}, \ldots, s_{i+1} . \exists s_{0}^{\prime}, \ldots, s_{i}^{\prime} .\right. \tag{3}\\
& \left.I\left(s_{0}\right) \wedge \bigwedge_{j=0}^{i} T\left(s_{j}, s_{j+1}\right) \rightarrow\left(I\left(s_{0}^{\prime}\right) \wedge \bigwedge_{j=0}^{i-1} T\left(s_{j}^{\prime}, s_{j+1}^{\prime}\right) \wedge \bigvee_{j=0}^{i} s_{j}^{\prime}=s_{i+1}\right)\right\}
\end{align*}
$$

- Recurrence diameter: d_{r}
- The depth such that every execution of the system of length $\geq d_{r}$ must revisit states
- Can be exponentially larger than the diameter

$$
\begin{equation*}
r d r(M):=\max \left\{i \mid \exists s_{0} \ldots s_{i} . I\left(s_{0}\right) \wedge \bigwedge_{j=0}^{i-1} T\left(s_{j}, s_{j+1}\right) \wedge \bigwedge_{j=0}^{i-1} \bigwedge_{k=j+1}^{i} s_{j} \neq s_{k}\right\} \tag{4}
\end{equation*}
$$

- $d_{r} \geq d$
- Very difficult to compute the diameter
- Requires a quantifier: find d such that any state reachable at $d+1$ is also reachable in $\leq d$ steps (replace " i " with " d " in equation (3) above)

K-Induction

- Extends bounded model checking to be able to prove properties
- Based on the concept of (strong) mathematical induction
- For increasing values of k, check:
- Base Case: $I\left(s_{0}\right) \wedge \wedge_{i=1}^{k} T\left(s_{i-1}, s_{i}\right) \wedge \neg P\left(s_{k}\right)$
- Inductive Case: $\left(\wedge_{i=1}^{k+1} T\left(s_{i-1}, s_{i}\right) \wedge P\left(s_{i-1}\right)\right) \wedge \neg P\left(s_{k+1}\right)$
- If base case is SAT, return a counter-example
- If inductive case is UNSAT, return TRUE
- Otherwise, continue

K-Induction Graphically

Base Case

s_{0} must be an initial state

Arbitrary starting state s_{0} such that $P\left(s_{0}\right)$ holds

K-Induction: Simple Path

- This approach can be complete over a finite domain
- requires the simple path constraint
- each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

K-Induction: Simple Path

- This approach can be complete over a finite domain
- requires the simple path constraint
- each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

Without simple path, inductive step could get:

K-Induction Observation

- Crucial observation
- Does not depend on direct computation of reachable state space
- Beginning of "property directed" techniques
- We do not need to know the exact reachable states, as long as we can guarantee they meet the property
- "Property directed" is associated with a family of techniques that build inductive invariants automatically

Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
- In the worst case, the reachable states are themselves an inductive invariant
- Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
- $\operatorname{Init}(s) \Rightarrow I I(s)$
- $\mathrm{T}\left(s, s^{\prime}\right) \wedge I I(s) \Rightarrow I I\left(s^{\prime}\right)$
- $I I(s) \Rightarrow P(s)$

Advanced Algorithms

- Interpolant-based model checking
- Constructs an over-approximation of the reachable states
- Terminates when it finds an inductive invariant or a counterexample
- IC3 / PDR
- Computes over (under) approximations of forward (backward) reachable states
- Refines approximations by guessing relative inductive invariants
- Terminates when it finds an inductive invariant or a counterexample

Building Blocks: Approximations

- Problems
- Explicit reachability computation (e.g. BDDs) is difficult
- Inductive invariants are difficult to find
- Solution (motivation for approximations)
- Build approximations of reachable states
- Iteratively refine it until inductive

What is an approximation?

- Actual reachable state set: R
- Over-approximation, $O: R \rightarrow O$
- Proofs on over-approximation holds
- Counterexamples can be spurious
- Under-approximation, $U: U \rightarrow R$
- Proofs on under-approximation can be spurious
- Counterexamples are real

Craig Interpolation

- Given an unsatisfiable formula, $A \wedge B$
- Craig Interpolant, I
- $A \rightarrow I$
- $I \wedge B$ is UNSAT
- $V(I) \subseteq V(A) \cap V(B)$
- Where V returns the free variables (uninterpreted constants) of a formula
- We can use interpolants as over-approximations of A

Obtaining Craig Interpolants

- Mechanical over SAT
- Label clauses in the proof
- Some straightforward post-processing
- Non-trivial for SMT
- But there are solvers that support it
- MathSAT
- Smt-Interpol
- CVC4 - through SyGuS

Interpolant-based Model Checking

- Big picture
- Perform BMC
- Iteratively compute and refine an over-approximation of states reachable in k steps
- If it becomes inductive, you're done

Interpolants for Abstraction from BMC Run

- Obtain interpolant, I, from an unsat $B M C$ run with A and B as shown below
- Useful properties
- I over-approximates A , i.e. states reachable in one-step from Init: $A \rightarrow I$
- There are no states reachable in $k-1$ steps from I that violate the property: $I \wedge B$ UNSAT
- I only contains symbols from one time step (time 1): $V(I) \subseteq V(A) \cap V(B)$

> From UNSAT $A \wedge B$, Craig Interpolant, I : $\quad A \rightarrow I$
> $I \wedge B$ is UNSAT $V(I) \subseteq V(A) \cap V(B)$

Interpolant-based Model Checking

If it is and $R=$ Init, return false. True counterexample.
else
$R=$ Init k++
else
$I=$ get_interpolant()
$R=R \vee I[1 / 0] / /$ map symbols at 1 to symbols at 0
We reached a fixed point where R is not changing. We found an invariant and proved the property.

If A and B is UNSAT, we find an interpolant I. Recall that I over-approximates A, i.e. states reachable in one-step from R: $\boldsymbol{A} \rightarrow \boldsymbol{I}$. Also, there are no states reachable in $k-$ 1 steps from I that violate the property: $\boldsymbol{I} \wedge \boldsymbol{B}$ UNSAT.
R to Init and restart. We may have found a spurious counterexample.
if $\neg \operatorname{check}\left(R \wedge T\left(s_{0}, s_{1}\right) \wedge \neg R\right) \quad$ Check to see if $R \wedge T\left(s_{0}, s_{1}\right) \rightarrow R$ is valid. I.e., check to see if $R \wedge T\left(s_{0}, s_{1}\right) \wedge \neg R$ is SAT. If UNSAT, the validity check holds which means the transition function will not grow R.

Interpolant-based Model Checking Example

- Check to see if initial states or

```
if check(Init ^T( (so, s ) ^( }\negP(\mp@subsup{s}{0}{})\vee\negP(\mp@subsup{s}{1}{})
    return False
``` states reachable in 1 step violate \(P\)

Init: S0
Bad: \(\mathrm{P}=\neg S 9\)

\section*{Interpolant-based Model Checking Example}
- Check to see if initial states or
```

if check(Init ^T( so, s1)^(\negP(\mp@subsup{s}{0}{})\vee\negP(\mp@subsup{s}{1}{}))
return False

``` states reachable in 1 step violate \(P\)

Init: SO
Bad: \(\mathrm{P}=\neg S 9\)

\section*{Interpolant-based Model Checking Example}
- \(k=2\)
\[
\begin{aligned}
& \text { k=2; } R=\text { Init } \\
& \text { while True } \\
& \quad A:=R \wedge T\left(s_{0}, s_{1}\right), B:=\neg P\left(s_{k}\right) \wedge \wedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right) \\
& \text { if } \operatorname{check}(A \wedge B)
\end{aligned}
\]

R: over-approx
Bad: \(\mathrm{P}=\neg S 9\)

S6 \(\longrightarrow \mathrm{S} 7\)

S8

\section*{Interpolant-based Model Checking Example}
- Start - can't violate in 2 steps
\[
\begin{aligned}
& R=\text { Init } \\
& \text { while True } \\
& \quad A:=R \wedge T\left(s_{0}, s_{1}\right), B:=\neg P\left(s_{k}\right) \wedge \wedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right) \\
& \text { if } \operatorname{check}(A \wedge B)
\end{aligned}
\]

R: over-approx
Bad: \(\mathrm{P}=\neg S 9\)

\(\mathrm{S} 6 \longrightarrow \mathrm{~S} 7\)

\section*{Interpolant-based Model Checking Example}
- \(k=2\)
\[
\begin{aligned}
& I=\text { get_interpolant }() \\
& R=R \vee I[1 / 0] / / \operatorname{map} \text { symbols at } 1 \text { to symbols at } 0 \\
& \quad \text { if } \neg \operatorname{check}\left(R \wedge T\left(s_{0}, s_{1}\right) \wedge \neg R\right) \\
& \quad \operatorname{return} \operatorname{True}
\end{aligned}
\]

\section*{Interpolant-based Model Checking Example}
- \(\mathrm{k}=2\)
while True
\(A:=R \wedge T\left(s_{0}, s_{1}\right), B:=\neg P\left(s_{k}\right) \wedge \wedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right)\)
if \(\operatorname{check}(A \wedge B)\)
\(A:=R \wedge T\left(s_{0}, s_{1}\right), B:=\neg P\left(s_{k}\right) \wedge \wedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right)\) if \(\operatorname{check}(A \wedge B)\)

R: over-approx
Bad: \(\mathrm{P}=\neg S 9\)

From UNSAT \(A \wedge B\), Craig Interpolant, \(I\) : \(A \rightarrow I\)
\(I \wedge B\) is UNSAT \(V(I) \subseteq V(A) \cap V(B)\)

\section*{Interpolant-based Model Checking Example}
- \(k=2\)
```

I = get_interpolant()
R=R\veeI[1/0] // map symbols at 1 to symbols at 0
if \negcheck(R\wedgeT( }\mp@subsup{s}{0}{},\mp@subsup{s}{1}{})\wedge\negR
return True

```


From UNSAT \(A \wedge B\), Craig Interpolant, \(I\) : \(A \rightarrow I\)
\(I \wedge B\) is UNSAT \(V(I) \subseteq V(A) \cap V(B)\)

\section*{Interpolant-based Model Checking Example}
- \(k=2\)
```

I = get_interpolant()
R=R\veeI[1/0] // map symbols at 1 to symbols at 0
if \negcheck(R\wedgeT( }\mp@subsup{s}{0}{},\mp@subsup{s}{1}{})\wedge\negR
return True

```

R: over-approx Bad: \(\mathrm{P}=\neg S 9\)

From UNSAT \(A \wedge B\), Craig Interpolant, \(I\) : \(A \rightarrow I\)
\(I \wedge B\) is UNSAT \(V(I) \subseteq V(A) \cap V(B)\)

\section*{Interpolant-based Model Checking Example}
- \(k=2\), can reach \(S 9\) in 2 steps from \(R\)

\section*{Interpolant-based Model Checking Example}
- \(k=3\), restart with \(R=\) Init and increment \(K\)

\section*{Interpolant-based Model Checking Example}
- \(k=3\), restart with \(R=\) Init and increment \(K\)

\section*{Interpolant-based Model Checking Example}
- \(k=3\)
\[
\begin{aligned}
& I=\text { get_interpolant }() \\
& R=R \vee I[1 / 0] / / \operatorname{map} \text { symbols at } 1 \text { to symbols at } 0 \\
& \quad \text { if } \neg \operatorname{check}\left(R \wedge T\left(s_{0}, s_{1}\right) \wedge \neg R\right) \\
& \quad \operatorname{return} \operatorname{True}
\end{aligned}
\]

\section*{Interpolant-based Model Checking Example}
- \(k=3\)

R: over-approx
Bad: \(\mathrm{P}=\neg S 9\)

\(R=\) Init
while True
\(\quad A:=R \wedge T\left(s_{0}, s_{1}\right), B:=\neg P\left(s_{k}\right) \wedge \wedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right)\)
if \(\operatorname{check}(A \wedge B)\)

\section*{Interpolant-based Model Checking Example}
- \(\mathrm{k}=3\), interpolant guarantees property not violated in \(\mathrm{k}-1 \rightarrow 2\) steps

\section*{Interpolant-based Model Checking Example}
- Terminate with True! We reached a fixed point!

\section*{Interpolant-based model checking}
- Advantages
- Approximate reachability
- Clever refinements
- Disadvantages
- Requires unrolling (can become expensive)
- Needs to restart every time \(k\) is incremented
- Refinements are clever, but not directly targeting induction```

