
CS 257: Introduction to
Automated Reasoning
Model Checking, Bounded Model Checking, K-Induction, Interpolation

Outline

• What is Model Checking?
• Modeling: Transition Systems
• Specification: Linear Temporal Logic

• Historical Verification Approaches
• Explicit-state
• BDDs

• SAT/SMT-based Verification Approaches
• Bounded Model Checking
• K-Induction

• Inductive Invariants

* Many of the slides today are contributed by Makai Mann.

https://makaimann.github.io/

What is Model Checking?

• Approach for verifying the temporal behavior
of a system
• Model: Representation of the system
• Specification: High-level desired property of

system
• Considers infinite sequences

Model Checker

Model Spec

YesNo

Counter-
Example

Proof
(optional)

Modeling: Transition System

• Model checking typically operates over Transition Systems
• A (symbolic) state machine

• A Transition System is ⟨𝑆, 𝐼, 𝑇⟩
• 𝑆: a set of states
• 𝐼: a set of initial states (sometimes use 𝐼𝑛𝑖𝑡 instead of 𝐼 for clarity)
• 𝑇: a transition relation: 𝑇 ⊆ 𝑆×𝑆

• 𝑇 𝑠!, 𝑠" holds when there is a transition from 𝑠! to 𝑠"

Symbolic Transition Systems in Practice

• States are made up of state variables 𝑣 ∈ 𝑉
• A state is an assignment to all variables

• A Transition System is ⟨𝑉, 𝐼, 𝑇⟩
• 𝑉: a set of state variables, 𝑉! denotes next state variables
• 𝐼: a set of initial states
• 𝑇: a transition relation

• 𝑇 𝑣!, … , 𝑣#, 𝑣!$, … , 𝑣#$ holds when there is a transition
• Note: will often still use 𝑠 to denote symbolic states (just know they’re made up of

variables)

• Symbolic state machine is built by translating another representation
• E.g. a program, a mathematical model, a hardware description, etc…

Symbolic Transition System Example

• 2 variables: 𝑉 = 𝑣&, 𝑣'
• 𝑆" ≔ ¬𝑣" ∧ ¬𝑣#, 𝑆# ≔ ¬𝑣" ∧ 𝑣#
• 𝑆$ 	≔ 𝑣" ∧ ¬𝑣#, 𝑆% 	≔ 𝑣" ∧ 𝑣#

• Transition relation
¬𝑣& ∧ ¬𝑣' ⇒ ¬𝑣&(∧ 𝑣'(∨ 𝑣&(∧ ¬𝑣'(∧
¬𝑣& ∧ 𝑣' ⇒ 𝑣&(∧ 𝑣'(∧
𝑣& ∧ ¬𝑣' ⇒ 𝑣&(∧ 𝑣'(∧
𝑣& ∧ 𝑣' ⇒ (𝑣&(∧ 𝑣'()

S0

S1

S2

S3

Modeling: Transition System Executions

• An execution is a sequence of states that respects 𝐼 in the first state
and 𝑇 between every adjacent pair

• 𝜋	 ≔ 𝑠&	𝑠' 	… 𝑠) is a finite sequence if 𝐼 𝑠& ∧ ⋀*+') 𝑇(𝑠*,', 𝑠*)

Meta Note: State Machine vs Execution
Diagrams

State Machine uses capitals

S0

S1

S2

S3

Symbolic execution uses lowercase

Concrete Execution:

s0=S0, s1=S2, s2=S3, s3=S3

s0 s1 s2 s3

Specification: Linear Temporal Logic (LTL)

• Notation: 𝑀 ⊨ 𝑓
• Transition system model, 𝑀, entails LTL property, 𝑓, for ALL possible paths
• i.e. LTL is implicitly universally quantified

• Other logics include
• CTL: computational tree logic (branching time)
• CTL*: combination of LTL and CTL
• MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic (LTL)

• Atomic state property 𝑃 ⊆ 𝑆:
• Holds iff 𝑠! ∈ 𝑃

• Next P: 𝑋(𝑃)
• P holds Next time
• Also written ○p
• True iff the next state meets property P

• Invariant P: G(P)
• P Globally holds
• Also written □p
• True iff every reachable state meets

property P

s0 s1 s2 s3

s0 s1 s2 s3

s0 s1 s2 s3 …

P

PP P P

P

Specification: Linear Temporal Logic

• Eventually P: F(P)
• P holds in the Future
• Also written ◇p
• True iff P eventually holds

• P1 Until P2: P1 U P2
• P1 holds until P2 holds
• True iff P1 holds up until (but not

necessarily including) a state where
P2 holds
• P2 must hold at some point

s0 s1 s2 sk…

s0 s1 sk… 𝑠!"#

P1P1 P2

P

Specification: Linear Temporal Logic

• LTL operators can be composed
• 𝐺 𝑅𝑒𝑞 ⇒ 𝐹 𝐴𝑐𝑘

• Every request eventually acknowledged
• 𝐺(𝐹 𝐷𝑒𝑣𝑖𝑐𝑒𝐸𝑛𝑎𝑏𝑙𝑒𝑑)

• The device is enabled infinitely often (from every state, it’s eventually enabled again)
• 𝐹(𝐺 ¬𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑖𝑛𝑔)

• Eventually it’s not initializing
• E.g. there is some initialization procedure that eventually ends and never restarts

Specification: Safety vs. Liveness

• Safety: “something bad does not happen”
• State invariant, e.g. 𝐺(¬𝑏𝑎𝑑)

• Liveness: “something good eventually happens”
• Eventuality, e.g. G𝐹(𝑔𝑜𝑜𝑑)

• Fairness conditions
• Fair traces satisfy each of the fairness conditions infinitely often
• E.g. only fair if it doesn’t delay acknowledging a request forever

• Every property can be written as a conjunction of a safety and
liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181–185, October 1985.

Specification: Liveness to Safety

• Can reduce liveness to safety checking
• For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety
Checking, Electronic Notes in Theoretical Computer Science. 2002

• Several approaches for first-order logic

• From now on, we consider only safety properties

Historical Verification Approaches: Explicit
State
• Tableaux-style state exploration
• Form of depth-first search
• Many clever tricks for reducing search space
• Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

• Binary Decision Diagrams (BDDs)
• Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic
Model Checking: 10-& States and beyond
• Great BDD resource:

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenz
i99bdd.pdf

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf
http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

• Represent Boolean formula as a decision
diagram
• Example: (𝑥'∧ 𝑥-) ∨ (𝑥. ∧ 𝑥/)
• Can be much more succinct than other

representations

Credit for Example: Introduction to Formal Hardware Verification – Thomas Kropf

𝑥#

𝑥$
𝑥%

𝑥&

F T

T

T

T

T

F

F

F

F

𝑥#

𝑥% 𝑥%

𝑥$ 𝑥$ 𝑥$ 𝑥$

…

Binary
Decision Tree

Binary Decision
Diagram

F

F F

T

T T

Historical Verification Approaches: BDDs

𝑥#

𝑥$
𝑥%

𝑥&

F T

T

T

T

T

F

F

F

F

BDD Operators
• Negation
• Swap leaves (F à T)

• AND
• All Boolean operators implemented

recursively

• These two operators are sufficient

Image Credit: Introduction to Formal Hardware Verification – Thomas Kropf

BDDs: Cofactoring

• 𝑓|¬1! for BDD 𝑓 is fixing 𝑥- to be negative

𝑥#

𝑥$
𝑥%

𝑥&

F T

T

T

T

T

F

F

F

F

𝑥#

𝑥$
𝑥%

𝑥&

F T

T

T

T

T

F

F

F

F
𝑥$

𝑥&

F T

T

F

F

Credit for Example: Introduction to Formal Hardware Verification – Thomas Kropf

Redirect incoming edges
to assignment (F) After reduction

𝑓 𝑥 ≔ (𝑥 ∧ 𝑓 ,
'
) ∨ (¬𝑥 ∧ 𝑓 ,

¬'
)

Node to
remove

BDD Image Computation

• Current reachable states are BDD 𝑅
• Over variable set 𝑉

• Compute next states with:
• 𝑁	 ≔ 	∃𝑉	𝑇 𝑉, 𝑉! ∧ 𝑅(𝑉)
• Existential is implemented cofactoring: ∃𝑥0	. 𝑓 … , 𝑥0, … ≔ 𝑓(… , 𝐹,…) ∨
𝑓(… , 𝑇,…)

• Grow reachable states
• 𝑅 = 𝑅 ∨ 𝑁[𝑉!/𝑉]
• Map next-state variables to current state, then add to reachable states

T, R, and N are all BDDs

Convert next state variables V’
to state variables V

BDD image computation is based on the idea
that all reachable next states are either
already in R or they are the result of applying
the transition function to some set of states V
in R to reach the set of states V’.

𝑇 𝑉, 𝑉) ∧ 𝑅(𝑉) using BDD operations.
Then, use cofactoring operation to
remove (non-next state) state-variables.

BDD-based model checking

• Start with 𝑅 = 𝐼𝑛𝑖𝑡

• Keep computing image and growing reachable states

• Stop when there’s a fixpoint (reachable states not growing)

• Can handle ~10-& states
• More with abstraction techniques and compositional model checking

BDD: Variable Ordering

• Good variable orderings can be exponentially more compact
• Finding a good ordering is NP-complete

• There are formulas that have no non-exponential ordering

Image Credit: https://en.wikipedia.org/wiki/Binary_decision_diagram

https://en.wikipedia.org/wiki/Binary_decision_diagram

SAT-based model checking

• Edmund Clarke
• One of the founders of model checking

• SAT solving taking off
• Clarke hired several post-doctoral students to try to use SAT as an

oracle to solve model checking problems
• Struggled for a while to find a general technique
• What if you give up completeness? à Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu.
Symbolic Model Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

• Sacrifice completeness for quick bug-finding
• Unroll the transition system
• Each variable 𝑣 ∈ 𝑉 gets a new symbol for each time-step, e.g. 𝑣5 is 𝑣

at time k
• Space-Time duality: unrolls temporal behavior into space

• For increasing values of k, check:
• 𝐼 𝑠" ∧	⋀06#5 𝑇 𝑠07#, 𝑠0 ∧ ¬𝑃 𝑠5

• If it is ever SAT, return FALSE
• Can construct a counter-example trace

BMC Graphically

𝑠* 𝑠# 𝑠% 𝑠!

𝑃 𝑠! ?

…

𝐼(𝑠*)

𝑠* must be an initial state Check if it can violate the
property at time k

Bounded Model Checking: Completeness

• Completeness condition: reaching the diameter
• Diameter: 𝑑

• Depth needed to unroll to such that every possible state is reachable in 𝑑 steps or less

• Recurrence diameter: 𝑑"
• The depth such that every execution of the system of length ≥ 𝑑! must revisit states
• Can be exponentially larger than the diameter

• 𝑑" ≥ 𝑑

• Very difficult to compute the diameter
• Requires a quantifier: find 𝑑 such that any state reachable at 𝑑 + 1 is also reachable

in ≤ 𝑑 steps (replace “i” with “d” in equation (3) above)

5 Techniques for Completeness

Given a model checking problemM |=E f , a typical application of BMC starts at bound
0 and increments the bound until a witness is found. This represents a partial decision
procedure for model checking problems. If M |= E f , a witness of finite length k exists,
and the procedure terminates at length k. If M 6|= E f , however, the outlined procedure
does not terminate. Although the strength of BMC is in detection of errors, it is desir-
able to build a complete decision procedure based on BMC for obvious reasons. For
example, BMC may be used to clear a module level proof obligation which may be
as assumption for another module. A missed counterexample in a single module may
have the unpleasant consequence of breaking the entire proof. In such compositional
reasoning environments, completeness becomes particularly important.

In this section, we will highlight three techniques for achieving completeness with
BMC. For unnested properties such as Gp and Fp, we determine in section 5.1 the
maximum bound k that the BMC formula should be checked with in order to guarantee
that the property holds. This upper bound is called the Completeness Threshold. For
liveness properties, we show an alternative path to completeness in section 5.2. The
alternative method is based on a semi-decision procedure for AFp combined with a
semi decision procedure for EGp. Finally, in section 5.3, we show how for safety prop-
erties completeness can be achieved with induction based on strengthening inductive
invariants.

5.1 The completeness threshold

For every finite state system M, a property p, and a given translation scheme, there
exists a number C T , such that the absence of errors up to cycle CT proves thatM |= p.
We call CT the Completeness Threshold of M with respect to p and the translation
scheme.

The completeness threshold forGp formulas is simply the minimal number of steps
required to reach all states. We call this the reachability diameter and formally define it
as follows:

Definition 10 (Reachability Diameter). The reachability diameter rd(M) is the mini-
mal number of steps required for reaching all reachable states:

rd(M) :=min{i|8s0, . . . ,sn. 9s00, . . . ,s0t , t i.
I(s0)^

Vn�1
j=0 T (s j,s j+1)! (I(s00)^

Vt�1
j=0T (s0j,s0j+1)^ s0t = sn)}

(2)

Formula (2) simply states that every state that is reachable in n steps (left side of the
implication) can also be reached in i steps (right side of the implication). In other words,
rd(M) is the longest ‘shortest path’ from an initial state to any reachable state. This
definition leaves open the question of how large should n be. One option is to simply
take the worst case, i.e. n= 2|V |, whereV is the set of variables defining the states ofM.
A better option is to take n= i+1 and check whether every state that can be reached in
i+1 steps, can be reached sooner:

rd(M) :=min{i|8s0, . . . ,si+1. 9s00, . . . ,s0i.
I(s0)^

Vi
j=0T (s j,s j+1)! (I(s00)^

Vi�1
j=0T (s0j,s0j+1)^

Wi
j=0 s0j = si+1)}

(3)

In Formula (3), the sub formula to the left of the implication represent an i+ 1 long
path, and the sub-formula to the right of the implication represents an i long path. The
disjunction in the end of the right hand side forces the i+ 1 state in the longer path to
be equal to one of the states in the shorter path.

Both equations 2 and 3 include an alternation of quantifiers, and are hence hard to
solve for realistic models. As an alternative, it is possible to compute an over approx-
imation of rd(M) with a SAT instance. This approximation was first defined in [4] as
the recurrence diameter, and we now adapt it to the reachability diameter:
Definition 11 (Recurrence Diameter for Reachability). The Recurrence Diameter
for Reachability with respect to a model M, denoted by rdr(M), is the longest loop-
free path in M starting from an initial state:

rdr(M) := max{i| 9s0 . . .si. I(s0)^
i�1̂

j=0
T (s j,s j+1)^

i�1̂

j=0

î

k= j+1
s j 6= sk} (4)

rdr(M) is clearly an over-approximation of rd(M), because every shortest path is a
loop-free path.

The question of how to compute CT for other temporal properties is still open. Most
safety properties used in practice can be reduced to some Gp formula, by computing p
over a product of M and some automaton, which is derived from the original property.
Therefore computing CT for these properties is reduced to the problem of computing
CT of the new model with respect to a Gp property.

5.2 Liveness
In the discussion of bounded model checking so far, we have focused on existentially
quantified temporal logic formulas. To verify an existential LTL formula against a
Kripke structure, one needs to find a witness. As explained before, this is possible be-
cause if a witness exists, it can be characterized by a finite sequence of states. In the
case of liveness, the dual is also true: if a proof of liveness exists, the proof can be es-
tablished by examining all finite sequences of length k starting from initial states (note
that for a proof we need to consider all paths rather than search for a single witness).
Definition 12 (Translation for Liveness Properties).

[[M,AFp]]k := I(s0)^
k�1̂

i=0
T (si,si+1)!

k_

i=0
p(si) (5)

Theorem 3. M |= AFp iff 9k [[M,AFp]]k is valid.

According to Theorem 3, we need to search for a k that makes the negation of
[[M,AFp]]k unsatisfiable. Based on this theorem, we obtain a semi-decision procedure
for M |= AFp. The procedure terminates if the liveness property holds. The bound k
needed for a proof represents the length of the longest sequence from an initial state
without hitting a state where p holds. Based on bounded model checking, we have a
semi-decision procedure for M |= EG¬p, or equivalently, M 6|= AFp. Since we know
that either AFp or EG¬p must hold for M, one of the semi-decision procedures must
terminate. Combining the two, we obtain a complete decision procedure for liveness.

K-Induction

• Extends bounded model checking to be able to prove properties
• Based on the concept of (strong) mathematical induction
• For increasing values of k, check:
• Base Case: 𝐼 𝑠" ∧	⋀06#5 𝑇 𝑠07#, 𝑠0 ∧ ¬𝑃 𝑠5
• Inductive Case: ⋀06#5;#𝑇 𝑠07#, 𝑠0 ∧ 𝑃 𝑠07# ∧ ¬𝑃(𝑠5;#)
• If base case is SAT, return a counter-example
• If inductive case is UNSAT, return TRUE
• Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stälmarck. Checking safety properties using induction and a SAT-solver. FMCAD 2000

K-Induction Graphically

𝑠* 𝑠# 𝑠% 𝑠!

𝑃 𝑠! ?

…

𝑠* 𝑠# 𝑠% 𝑠!"#

𝑃 𝑠!"# ?

…

Arbitrary starting state 𝑠*
such that 𝑃 𝑠* holds

𝑃 𝑠* 𝑃 𝑠# 𝑃 𝑠%

𝑠!

𝑃 𝑠!

𝐼(𝑠*)

𝑠* must be an initial state

Base Case

Inductive Case…

K-Induction: Simple Path

: not equal

• This approach can be complete over a finite
domain
• requires the simple path constraint
• each state is distinct from other states in trace

• If simple path is UNSAT, then we can return true

s0 s1 s2 s3

K-Induction: Simple Path

: not equal

Why?

S0 S1

S2 S3

Without simple path, inductive step could get:

S2 S2 S2 S3…s0 s1 s2 s3

• This approach can be complete over a finite
domain
• requires the simple path constraint
• each state is distinct from other states in trace

• If simple path is UNSAT, then we can return true

K-Induction Observation

• Crucial observation
• Does not depend on direct computation of reachable state space

• Beginning of “property directed” techniques
• We do not need to know the exact reachable states, as long as we can

guarantee they meet the property
• “Property directed” is associated with a family of techniques that build

inductive invariants automatically

Inductive Invariants

• The goal of most modern model checking algorithms
• Over finite-domain, just need to show that algorithm makes progress,

and it will eventually find an inductive invariant
• In the worst case, the reachable states are themselves an inductive invariant
• Hopefully there’s an easier to find inductive invariant that is sufficient

• Inductive Invariant: 𝐼𝐼
• 𝐼𝑛𝑖𝑡(𝑠) ⇒ 𝐼𝐼(𝑠)
• T 𝑠, 𝑠! ∧ 𝐼𝐼(𝑠) ⇒ 𝐼𝐼(𝑠!)
• 𝐼𝐼 𝑠 ⇒ 𝑃(𝑠)

State Space

Property
Simple Inductive

Invariant
Reachable
States

Advanced Algorithms

• Interpolant-based model checking
• Constructs an over-approximation of the reachable states
• Terminates when it finds an inductive invariant or a counterexample

• IC3 / PDR
• Computes over (under) approximations of forward (backward) reachable

states
• Refines approximations by guessing relative inductive invariants
• Terminates when it finds an inductive invariant or a counterexample

Building Blocks: Approximations

• Problems
• Explicit reachability computation (e.g. BDDs) is difficult
• Inductive invariants are difficult to find

• Solution (motivation for approximations)
• Build approximations of reachable states
• Iteratively refine it until inductive

What is an approximation?

• Actual reachable state set: 𝑅

• Over-approximation, 𝑂: 𝑅 → 𝑂
• Proofs on over-approximation holds
• Counterexamples can be spurious

• Under-approximation, 𝑈: 𝑈 → 𝑅
• Proofs on under-approximation can be spurious
• Counterexamples are real

Over-approximation

Exact States

Under-approximation

Craig Interpolation

• Given an unsatisfiable formula, 𝐴 ∧ 𝐵

• Craig Interpolant, 𝐼
• 𝐴 → 𝐼
• 𝐼 ∧ 𝐵 is UNSAT
• 𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

• Where 𝑉 returns the free variables (uninterpreted constants) of a formula

• We can use interpolants as over-approximations of 𝐴

Obtaining Craig Interpolants

• Mechanical over SAT
• Label clauses in the proof
• Some straightforward post-processing

• Non-trivial for SMT
• But there are solvers that support it

• MathSAT
• Smt-Interpol
• CVC4 – through SyGuS

K. L. McMillan, Interpolation and SAT-based Model Checking, CAV 2003

Interpolant-based Model Checking

• Big picture
• Perform BMC
• Iteratively compute and refine an over-approximation of states reachable in k

steps
• If it becomes inductive, you’re done

Interpolants for Abstraction from BMC Run

• Obtain interpolant, 𝐼, from an unsat BMC run with A and B as shown below
• Useful properties

• 𝐼 over-approximates A, i.e. states reachable in one-step from Init: 𝐴 → 𝐼
• There are no states reachable in 𝑘 − 1 steps from 𝐼 that violate the property: 𝐼 ∧ 𝐵

UNSAT
• 𝐼 only contains symbols from one time step (time 1): 𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

A B

𝐼𝑛𝑖𝑡 ∧ 𝑇 𝑠!, 𝑠" 𝑇 𝑠", 𝑠% ∧ ⋯∧ 𝑇 𝑠&'", 𝑠& ∧ ¬𝑃 𝑠&

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

Interpolant-based Model Checking
if check(Init ∧ 𝑇 𝑠*, 𝑠# ∧ (¬𝑃 𝑠* ∨ ¬𝑃 𝑠#)
 return False
k=2

𝑅 = 𝐼𝑛𝑖𝑡
while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# , 𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)
 if 𝑅 == Init
 return False
 else
 𝑅 = 𝐼𝑛𝑖𝑡
 k++
 else
 𝐼 = get_interpolant()
 𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
 if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

Base case: Check if s0 or s1 violate P

Initialize R to the
initial states.

A = set of states
reachable in 1
step from R.

B = Represents a violation of the property P in
K-1 steps from the states represented by A.

Check to see if P is violated is K
steps from R.

Otherwise, increment, reset
R to Init and restart. We
may have found a spurious
counterexample.

If A and B is UNSAT, we find an interpolant I. Recall that 𝐼
over-approximates A, i.e. states reachable in one-step
from R: 𝑨 → 𝑰. Also, there are no states reachable in 𝑘 −
1 steps from 𝐼 that violate the property: 𝑰 ∧ 𝑩 UNSAT.

We reached a fixed point where R
is not changing. We found an
invariant and proved the property.

If it is and R = Init, return
false. True counterexample.

Check to see if 𝑅 ∧ 𝑇 𝑠!, 𝑠" → 𝑅 is valid. I.e., check to see if
𝑅 ∧ 𝑇 𝑠!, 𝑠" ∧ ¬𝑅 is SAT. If UNSAT, the validity check holds
which means the transition function will not grow R.

Interpolant-based Model Checking Example

• Check to see if initial states or
states reachable in 1 step violate P

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

Init: S0
Bad: P = ¬𝑆9

if check(Init ∧ 𝑇 𝑠*, 𝑠# ∧ (¬𝑃 𝑠* ∨ ¬𝑃 𝑠#)
 return False

Interpolant-based Model Checking Example

• Check to see if initial states or
states reachable in 1 step violate P

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

Init: S0
Bad: P = ¬𝑆9

if check(Init ∧ 𝑇 𝑠*, 𝑠# ∧ (¬𝑃 𝑠* ∨ ¬𝑃 𝑠#)
 return False

Interpolant-based Model Checking Example

• k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

𝑘 = 2; 	𝑅 = 𝐼𝑛𝑖𝑡
while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# ,𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)

Interpolant-based Model Checking Example

• Start – can’t violate in 2 steps

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

𝑅 = 𝐼𝑛𝑖𝑡
while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# ,𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)

Interpolant-based Model Checking Example

• k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

𝐼 = get_interpolant()
 𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
 if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

R: over-approx
Bad: P = ¬𝑆9

Interpolant-based Model Checking Example

• k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# ,𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)

R: over-approx
Bad: P = ¬𝑆9

Interpolant-based Model Checking Example

• k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

𝐼 = get_interpolant()
 𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
 if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

R: over-approx
Bad: P = ¬𝑆9

Interpolant-based Model Checking Example

• k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

𝐼 = get_interpolant()
 𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
 if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

R: over-approx
Bad: P = ¬𝑆9

Interpolant-based Model Checking Example

• k = 2, can reach S9 in 2 steps from R

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

if check(𝐴 ∧ 𝐵)
 if 𝑅 == Init
 return False
 else
 𝑅 = 𝐼𝑛𝑖𝑡
 k++

Interpolant-based Model Checking Example

• k = 3, restart with R = Init and increment K

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

if check(𝐴 ∧ 𝐵)
 if 𝑅 == Init
 return False
 else
 𝑅 = 𝐼𝑛𝑖𝑡
 k++

Interpolant-based Model Checking Example

• k = 3, restart with R = Init and increment K

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

𝑅 = 𝐼𝑛𝑖𝑡
while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# ,𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)

Interpolant-based Model Checking Example

• k = 3

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

𝐼 = get_interpolant()
 𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
 if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

Interpolant-based Model Checking Example

• k = 3

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

𝑅 = 𝐼𝑛𝑖𝑡
while True
 𝐴	 ≔ 𝑅 ∧ 𝑇 𝑠*, 𝑠# ,𝐵	 ≔ ¬𝑃 𝑠! ∧ ⋀+,#!-#𝑇(𝑠+ , 𝑠+"#)
 if check(𝐴 ∧ 𝐵)

Interpolant-based Model Checking Example

• k = 3, interpolant guarantees property not violated in k-1 à 2 steps

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

From UNSAT 𝐴 ∧ 𝐵, Craig Interpolant, 𝐼:
𝐴 → 𝐼
𝐼 ∧ 𝐵 is UNSAT
𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

Interpolant-based Model Checking Example

• Terminate with True! We reached a fixed point!

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R: over-approx
Bad: P = ¬𝑆9

if ¬check(𝑅 ∧ 𝑇 𝑠*, 𝑠# ∧ ¬𝑅)
 return True

Interpolant-based model checking

• Advantages
• Approximate reachability
• Clever refinements

• Disadvantages
• Requires unrolling (can become expensive)
• Needs to restart every time k is incremented
• Refinements are clever, but not directly targeting induction

