
CS257: Introduction to Automated Reasoning
First-order Logic: Semantics



Outline

• Semantics of First-order logic (MI 2.2)

• PCNF (CC 2.5) and Clausal Form

• First-order Resolution

* Some of the slides today are contributed by Clark Barrett and Giles Reger.

October 18, 2023 CS257 1 / 27



Semantics

The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS ,ΣF ⟩, where:

• ΣS is a set of sorts

• ΣF is a set of function symbols

Example Given ΣN = ⟨Σ
S ∶= {Nat},ΣF ∶= {0,S ,+,×,<}⟩, < 0Sx is a Σ-formula.

In propositional logic, the truth of a formula was determined by a variable assignment over
the propositional symbols.

In first-order logic, the truth of a Σ-formula depends on:

1. what collection of things each sort σ refers to

2. what the function symbols denote

3. what is the value of each free variable

October 18, 2023 CS257 2 / 27



Semantics

The truth of a Σ-formula is determined by an interpretation I of Σ consisting of:

1. For each sort σ ∈ ΣS , a nonempty set called the domain of σ, written dom(σ)

2. A mapping from each n-ary function symbol f in ΣF of sort sort(f ) = ⟨σ1, . . . , σn, σn+1⟩ to
f I , an n-ary function from dom(σ1) ×⋯ × dom(σn) to dom(σn+1)

3. A mapping from each variable v of sort σ to its interpretation vI , an element of dom(σ)

Note 1: We always assume dom(Bool) = {T,F}
Note 2: We always assume �I = F, ⊺I = T.
Note 3: We always define the equality symbol =σ as f (x , y) = T iff x = y .
Note 4: (1) and (2) is called a structure or a model.

October 18, 2023 CS257 3 / 27



Semantics: Example

Consider a signature Σ = ⟨ΣS ,ΣF ⟩ for a fragment of set theory:

ΣS = {E ,S}, ΣF = {∅, ∈}, sort(∅) = S and sort(∈) = ⟨E ,S ,Bool⟩
We have a set of variables {v e

i } of sort E , and a set of variables {v s
i } of sort S

Consider the following interpretation I for this signature:

1. dom(E) = dom(S) = N , the set of natural numbers

2. ∈I =<, and ∅I = 0

3. v e
i
I
= i and v s

i
I
= 0, for i = 0,1, . . .

What do these Σ-formulas mean in this interpretation? Are the formulas true in the
interpretation?

• ∈ v e
1 v

s
2

• ∃ v e
1 ∀ v s

1 ¬ ∈ v
s
1 v e

1

October 18, 2023 CS257 4 / 27



Semantics

An interpretations I is analogous to a variable assignment in propositional logic.

We now define how to determine the truth value of a Σ-formula given I, which is analogous to
determining the truth value of a formula given a variable assignment in propositional logic.

The first step is to give meaning to well-sorted terms based on I

We define an evaluation function e from well-sorted terms and interpretations to
(⋃σ∈ΣS dom(σ)) :

• For each variable v , e(v ,I) = vI

• For each constant f , e(f ,I) = f I

• For a well-sorted term t ∶= ft1 . . . tn, e(f t1, . . . , tn,I) = f
I(e(t1,I), . . . , e(tn,I))

October 18, 2023 CS257 5 / 27



Semantics

Given e, we define a function e from Σ-formulas and interpretations to {1,0}:

• For each atomic formula α, e(α,I) = 1 iff e(α,I) = T

• e(¬α,I) = 1 − e(α,I)

• e(α → β,I) = max(1 − e(α,I), e(β,I))

• e(∀ v α,I) = 1 iff e(α,I(v ∣d)) = 1 for every d ∈ dom(σ) where σ = sort(v).

I(v ∣ d) signifies the interpretation that is the same as I everywhere except that it maps variable v to d .

The following are the same:

• e(α,I) = 1

• I ⊧ α
• α is true in I

• I satisfies α

October 18, 2023 CS257 6 / 27



Logical implication, validity

Let Γ be a set of Σ-formulas. We write I ⊧ Γ to signify that I ⊧ α for every α ∈ Γ.

If Γ is a set of Σ-formulas and α is a Σ-formula, then Γ logically implies α, written Γ ⊧ α, iff
for every interpretation I of Σ, if I ⊧ Γ then I ⊧ α.

We write β ⊧ α as an abbreviation for {β} ⊧ α.

β and α are logically equivalent (written β ⊧ ⊧α) iff β ⊧ α and α ⊧ β.

A Σ-formula α is valid, written ⊧ α iff I ⊧ α for every interpretation I.

Suppose that ΣS = {σ}, ΣF = {P,Q}, sort(P) = ⟨σ,Bool⟩, sort(Q) = ⟨σ,σ,Bool⟩, and all
variables have sort σ. Do the following statements hold?

1. ∀ v1 Pv1 ⊧ Pv2
2. Pv1 ⊧ ∀ v1 Pv1
3. ∀ v1 Pv1 ⊧ ∃ v2 Pv2
4. ∃ v2 ∀ v1 Qv1v2 ⊧ ∀ v1 ∃ v2 Qv1v2
5. ∀ v1 ∃ v2 Qv1v2 ⊧ ∃ v2 ∀ v1 Qv1v2
6. ⊧ ∃ v1 (Pv1 → ∀ v2 Pv2)

October 18, 2023 CS257 7 / 27



Exercise
The truth of a Σ-formula is determined by an interpretation I of Σ consisting of:

1. For each sort σ ∈ ΣS , a nonempty set called the domain of σ, written dom(σ)
2. A mapping from each n-ary function symbol f in ΣF of sort sort(f ) = ⟨σ1, . . . , σn, σn+1⟩ to f I , an n-ary

function from dom(σ1) × ⋯ × dom(σn) to dom(σn+1)
3. A mapping from each variable v of sort σ to its interpretation vI , an element of dom(σ)

Consider the signature where
ΣS = {σ},ΣF = {Q,=σ},
sort(x) = sort(y) = σ, sort(Q) = ⟨σ,σ,Bool⟩.

For each of the following Σ-formulas, describe an interpretation that satisfies it.

1. ∀ x ∀ y =σ x y
2. ∀ x ∀ y Qxy
3. ∀ x ∃ y Qxy

Submit one of your interpretations to

https://pollev.com/andreww095

October 18, 2023 CS257 8 / 27

https://pollev.com/andreww095


Exercise
The truth of a Σ-formula is determined by an interpretation I of Σ consisting of:

1. For each sort σ ∈ ΣS , a nonempty set called the domain of σ, written dom(σ)
2. A mapping from each n-ary function symbol f in ΣF of sort sort(f ) = ⟨σ1, . . . , σn, σn+1⟩ to f I , an n-ary

function from dom(σ1) × ⋯ × dom(σn) to dom(σn+1)
3. A mapping from each variable v of sort σ to its interpretation vI , an element of dom(σ)

Consider the signature where
ΣS = {σ},ΣF = {Q,=σ},
sort(x) = sort(y) = σ, sort(Q) = ⟨σ,σ,Bool⟩.

For each of the following Σ-formulas, describe an interpretation that satisfies it.

1. ∀ x ∀ y =σ x y dom(σ) has one element
2. ∀ x ∀ y Qxy QI(a,b) = T for (a,b) ∈ dom(σ)2

3. ∀ x ∃ y Qxy for each a ∈ dom(σ), there is b ∈ dom(σ) with QI(a,b) = T

October 18, 2023 CS257 9 / 27



Invariance of truth values

Theorem: Given a signature Σ, suppose two Σ-intepretations, I1 and I2 have the same
structure and agree at all variables (if any) which occur free in the wff α. Then I1 ⊧ α iff
I2 ⊧ α.

Proof: We call the evaluation functions for I1 and I2, e1 and e2, respectively. The proof is by
induction on well-formed formulas α.

1. If α is an atomic formula, then all variables in α occur free. Thus I1 and I2 agree on all
variables in α. It follows that e1(t) = e2(t) for each term t in α (technically we should
prove this by induction too). The result follows.

2. If α is (¬α) or (α → β), the result is immediate from the inductive hypothesis.

3. Suppose α = ∀ v β.The variables free in α are the same as those free in β except for v .
For any d in dom(sort(v)), I1(v ∣d) and I2(v ∣d) agree at all variables free in β. The
result follows from the inductive hypothesis.

As a corollary of this theorem, we have that for sentences, satisfaction is independent of the
variable assignment.

October 18, 2023 CS257 10 / 27



Notational conventions for formulas

From now on, in order to improve readability, we allow ourselves to use the infix notation for
logical operators and functions that are typically written using infix.

We may also add a period immediately after a quantifier and its variable for clarity.

Example ∀ x . ∀ y . x = y instead of ∀ x ∀ y = x y

We can also omit parentheses by defining precedence:

• Precedence for propositional logic still applies

• Quantifiers has the highest precedence after ¬.

Example ¬∀x . Px ∧Qx reads (¬(∀x . Px))) ∧Qx)

Finally, we will allow the use of parentheses following function symbols.

Example ∀x . p(r(x)) ∧ q(x) instead of ∀x . p r x ∧ q x

October 18, 2023 CS257 11 / 27



Prenex Normal Form (PNF)

We now define some useful syntactic restrictions to first-order logic.

A formula is in prenex normal form (PNF) iff it is of the form

Q1x1.⋯Qnxn.α,

where each Qi is a quantifier and α is a quantifier-free formula.

We say the formula is in prenex conjunctive normal form (PCNF) iff in addition α is
in conjunctive normal form (when replacing every atomic formula with a propositional
variable).

Example: the following formula is in PCNF:

∀y .∃z .((p(f (y)) ∨ q(z)) ∧ (¬q(z) ∨ q(y)))

October 18, 2023 CS257 12 / 27



Clausal Form

We say a first-order logic formula is in Clausal Form, iff
1. it is in PCNF;

2. it is closed (i.e., does not contain free variables);

3. it only contains universal quantifiers.

Example: Are the following formulas in Clausal Form?

• ∀y .∃z .(p(f (y)) ∧ ¬q(y , z))

• ∀y .∀z .(p(f (y)) ∧ ¬q(x , z))

• ∀y .∀z .(p(f (y)) ∧ ¬q(y , z))

October 18, 2023 CS257 13 / 27



Clausal Form: transformation

Skolem’s Theorem: Any sentence can be transformed into an equi-satisfiable formula
in clausal form.

The high level transformation strategy is as follows:

Sentence ⇒ PNF ⇒ PCNF ⇒ Clausal Form

We use the following formula as a running example:

(∀x .(p(x) → q(x))) → (∀x .p(x) → ∀x .q(x))

October 18, 2023 CS257 14 / 27



I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps.

(∀x .(p(x) → q(x))) → (∀x .p(x) → ∀x .q(x))

Step 1: Rename the bounded variables s.t. 1) the bounded variables are disjoint from
free variables; 2) no variable appears in two quantifiers.

(∀x .(p(x) → q(x))) → (∀y .p(y) → ∀z .q(z))

October 18, 2023 CS257 15 / 27



I: Transforming into PNF

(∀x .(p(x) → q(x))) → (∀y .p(y) → ∀z .q(z))

Step 2: Eliminate all occurrences of → and ↔ using the following logical equivalence:

• α1 ↔ α2 ⊧â (α1 → α2) ∧ (α2 → α1)

• α1 → α2 ⊧â ¬α1 ∨ α2

(∀x .(¬p(x) ∨ q(x))) → (∀y .p(y) → ∀z .q(z))
(∀x .(¬p(x) ∨ q(x))) → (¬∀y .p(y) ∨ ∀z .q(z))
¬(∀x .(¬p(x) ∨ q(x))) ∨ (¬∀y .p(y) ∨ ∀z .q(z))

October 18, 2023 CS257 16 / 27



I: Transforming into PNF

(¬∀x .(¬p(x) ∨ q(x))) ∨ (¬∀y .p(y)) ∨ ∀z .q(z)

Step 3: Collapse double negations and move all negations inward until they apply only
to atomic formulas using:

• ¬¬α ⊧â α

• De Morgan’s Laws

• ¬∀x .α ⊧â ∃x .¬α

• ¬∃x .α ⊧â ∀x .¬α

(∃x .¬(¬p(x) ∨ q(x))) ∨ (∃y .¬p(y)) ∨ ∀z .q(z)
(∃x .(p(x) ∧ ¬q(x))) ∨ (∃y .¬p(y)) ∨ ∀z .q(z)

October 18, 2023 CS257 17 / 27



I: Transforming into PNF

(∃x .(p(x) ∧ ¬q(x))) ∨ (∃y .¬p(y)) ∨ ∀z .q(z)

Step 4: Move all quantifiers to the front of the formula using:

• α ○Qx .β ⊧â Qx .(α ○ β) if x does not occur in α

• (Qx .α) ○ β ⊧â Qx .(α ○ β) if x does not occur in β

Note: ○ ∈ {∧,∨}

The equivalence says if a formula α’s truth value does not depend on x then one is
allowed to quantify over x .

∀z .∃x .∃y .((p(x) ∧ ¬q(x)) ∨ ¬p(y) ∨ q(z))

October 18, 2023 CS257 18 / 27



II: Transforming into PCNF

Transformation from PNF to an logically equivalent PCNF is straightforward. We can
treat each atomic formula as a propositional symbol and apply the distributive laws
from propositional logic.

∀z .∃x .∃y .((p(x) ∧ ¬q(x)) ∨ ¬p(y) ∨ q(z))

becomes
∀z .∃x .∃y .((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z))

This formula contains existential quantifiers and is therefore not in clausal form.

We say a first-order logic formula is in Clausal Form, iff
1. it is in PCNF;

2. it is closed (i.e., does not contain free variables);

3. it only contains universal quantifiers.

October 18, 2023 CS257 19 / 27



III: Transforming into Clausal Form (Skolemization)

∀z .∃x .∃y .((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z))

For every existential quantifier ∃x in the PCNF, let y1, . . . , yn be the universally quantified
variables preceding ∃x .

We introduce a new function symbol fx to our signature Σ with arity n and
sort(fx) = ⟨sort(y1), . . . sort(yn), sort(x)⟩. Delete ∃x and replace any occurrence of x by
fx(y1, . . . , yn).

For our running example, introduce unary functions fx and fy for ∃x and ∃y , respectively.

∀z .((p(fx(z)) ∨ ¬p(fy(z)) ∨ q(z)) ∧ (¬q(fx(z)) ∨ ¬p(fy(z)) ∨ q(z)),

These functions are called Skolem functions and the process of replacing existential
quantifiers by functions is called Skolemization.

Note: Technically, the resulting formula is no longer a Σ-formula, but a Σ′-formula, where
Σ′S = ΣS and Σ′F = ΣF ∪ {f }

October 18, 2023 CS257 20 / 27



Clausal Form

Skolem’s Theorem: Any sentence can be transformed into an equi-satisfiable formula
in clausal form.

The transformation procedure we just described serves as a proof of Skolem’s Theorem
(modulo proofs that the steps are satisfiability-preserving).

For details about the proof, see Chapter 9.2 of “Mathematical Logic for Computer
Science (3rd Edition)” by Mordechai Ben-Ari.

October 18, 2023 CS257 21 / 27



Clausal Form

As with propositional logic, we can write a formula in clause form unambiguously as a set of
clauses, e.g.:

∀z .((p(f (z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f (z)) ∨ ¬p(g(z)) ∨ q(z)),

can be written as

∆ ∶= {{p(f (z)),¬p(g(z)),q(z)},{¬q(f (z)),¬p(g(z)),q(z)}}

We could lift the propositional resolution to the first-order logic:

l ∈ C1 ¬l ∈ C2 C1,C2 ∈∆
(prop. resolution)

∆ ∪ {(C1 − {l}) ∪ (C2 − {¬l})}

where l is a literal (i.e., an atomic formula or its negation).

Example Consider ∆ ∶= {{p(f (z)),q(z)},{¬p(f (z)),¬p(g(z))}}

{q(z),¬p(g(z))} is a resolvant of the two clauses. ∆ and ∆ ∪ {{q(z),¬p(g(z))}} are
equivalent.

October 18, 2023 CS257 22 / 27



First-order resolution
l ∈ C1 ¬l ∈ C2 C1,C2 ∈∆

(prop. resolution)
∆ ∪ {(C1 − {l}) ∪ (C2 − {¬l})}

where l is a literal (i.e., an atomic formula or its negation).

Now consider ∆ ∶= {{¬P z ,Q z},{P a},{¬Q a}}, where z is a universally quantified variable,
and a is a constant.

Is P z equal to P a?

So we can instantiate the literals to make them equal and then perform resolution

October 18, 2023 CS257 23 / 27



First-order resolution: Unification

A substitution θ is a map from variables to well-sorted terms (of matching sorts)

Note: we assume the term does not contain any variables

We write tθ for the literal we get by replacing variables in t according to θ

Example: Let θ ∶= {z ↦ a} , then (p(g(z , z)))θ = p(g(a, a))

We use {l1, . . . , ln}θ to represent {l1θ, . . . , lnθ}

A substitution θ is a unifier of two terms s and t if tθ = sθ

Can there be more than one unifier of two terms?

Can there be no unifier of two terms?

October 18, 2023 CS257 24 / 27



First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − {l}) ∪ (C2 − {¬l})}θ

Example: {¬P z ,Q z},{P a},{¬Q a}

October 18, 2023 CS257 25 / 27



First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − {l}) ∪ (C2 − {¬l})}θ

Example {¬P z ,Q z},{P a},{¬Q a}
(θ ∶= {z ↦ a} unifies P z and P a)

{¬P z ,Q z},{P a},{¬Q a},{Q a}

October 18, 2023 CS257 26 / 27



First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − {l}) ∪ (C2 − {¬l})}θ

Example {¬P z ,Q z},{P a},{¬Q a}
(θ ∶= {z ↦ a} unifies P z and {P a})

{¬P z ,Q z},{P a},{¬Q a},{Q a}
(Resolve {¬Q a},{Q a})

{¬P z ,Q z},{P a},{¬Q a},{Q a},{}

Therefore, α ∶= ∀z .((¬P z ∨Q z) ∧ P a ∧ ¬Q a) is unsatisfiable.

What do we know about ¬α?

This suggests a strategy to prove the validity of a Σ-formula α:

1. Negate the formula;

2. Transform into Clausal Form;

3. Apply first-order resolution until an empty clause is derived (might not terminate!)

October 18, 2023 CS257 27 / 27


