
CS257: Introduction to Automated Reasoning
Proof Systems
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Proofs

What is a proof?

• A sequence of steps leading from some assumptions to some conclusions

• Each step should be convincing and should be drawn from a set of accepted proof
rules

Proof theory is a branch of mathematical logic in which proofs themselves are formal
objects we can prove things about

In automated reasoning, representing algorithms as proof systems has several
advantages

• Modular and composable

• Easier to prove things about the algorithms

• Can choose which implementation details to highlight and which to leave out
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Abstract Proof Systems

An abstract proof system is a tuple P = ⟨PS ,PR⟩ where PS is a set of proof states
and PR is a set of proof rules. Each proof rule is a partial function from proof states to
sets of proof states.

Proof state

• Represents what is known and assumed at each stage of the proof

• Example of a proof state: a set of propositional formulas
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Proof Rules

Proof rule

• Takes an input proof state

• Is only applicable if input proof state satisfies some premises

• Returns one or more proof states, the conclusions, said to be derived from the
input state

Notation for proof rules:

R
P1 P2 ⋯ Pm

C1 C2 ⋯ Cn

• R is the rule name (for rerferende)

• Each Pi is a premise

• Each Ci is a conclusion
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A Proof System for Propositional Logic

Let PPL = ⟨PS
PL,P

P
PL⟩ be a proof system for propositional logic

• A proof state S ∈ PS
PL is a set of well-formed propositional logic formulas

• Suppose PP
PL contains the modus ponens rule (MP for short)

- Let L be the set of propositional literals (i.e., variables or their negations)
- We use S to represent the state the rule is being applied to
- We can write MP as follows:

MP
p,q ∈ L p ∈ S p → q ∈ S q /∈ S

S ∪ {q}

Technically, MP is a proof rule schema

• p and q are parameters, and each possible instantiation is a separate proof rule

• For convenience, we will refer to both proof rules and proof rule schemas as
“proof rules”
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Example

MP
p,q ∈ L p ∈ S p → q ∈ S q /∈ S

S ∪ {q}

Suppose a,b, c ,d are propositional variables

What is the result of applying MP to the following proof states?

• {a, a → b} {a, a → b,b}

• {a ∨ ¬c ,¬d ,¬d → b} {a ∨ ¬c ,¬d ,¬d → b,b}

• {c ,d , c → d} Does not apply
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A Proof System for Propositional Logic

Let V be the set of all propositional variables

Let us consider another rule:

Split
p ∈ V p occurs in some formula in S p /∈ S ¬p /∈ S

S ∪ {p} S ∪ {¬p}

Can we apply Split to {a ∨ (b ∧ c),¬d}?

• Yes, if we choose p to represent a,b, or c , but not d

Let Splitb be the proof rule obtained by instantiating the parameter p with b

Then, formally:

• Splitb({a ∨ (b ∧ c),¬d}) = {{a ∨ (b ∧ c),¬d ,b},{a ∨ (b ∧ c),¬d ,¬b}}
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Derivation Trees

Let P = ⟨PS ,PR⟩ be an abstract proof system

• A proof state S is reducible with respect to P if at least one of the proof rules in
PR applies

• A P-derivation tree from S is a finite tree whose nodes are taken from PS , whose
root is S, and with the property that each internal node S′ of the tree is reducible
with respect to P, and its children are the conclusions resulting from applying
some rule in PR to S′

• A derivation tree is reducible with respect to P if at least one of its leaves is
reducible with respect to P
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Derivation Tree Example

What could a derivation tree from {b → c,¬b → c ,¬c} look like?

{b → c ,¬b → c ,¬c}
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Derivation Tree Example

What could a derivation tree from {b → c,¬b → c ,¬c} look like?

Split
{b → c ,¬b → c ,¬c}

{b → c ,¬b → c,¬c,b} {b → c ,¬b → c,¬c,¬b}
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Derivation Tree Example

What could a derivation tree from {b → c,¬b → c ,¬c} look like?

Split
{b → c ,¬b → c ,¬c}

MP
{b → c ,¬b → c,¬c,b}

{b → c ,¬b → c,¬c,b, c}
{b → c ,¬b → c,¬c,¬b}
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Derivation Tree Example

What could a derivation tree from {b → c,¬b → c} look like?

Split
{b → c ,¬b → c ,¬c}

MP
{b → c ,¬b → c,¬c,b}

{b → c ,¬b → c ,¬c,b, c}
MP

{b → c ,¬b → c ,¬c ,¬b}

{b → c ,¬b → c,¬c,¬b, c}
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Derivations

Let P = ⟨PS ,PR⟩ be an abstract proof system

• A P-derivation from τ is a (possibly infinite) sequence of derivation trees starting
with a P-derivation tree τ , where each tree is derived from the previous one by the
application of a single rule from PR to one of the previous tree’s leaves.

• A proof state is P-saturated if it is not reducible with respect to P.
• A derivation tree is P-saturated if it is not reducible with respect to P.
• A derivation is P-saturated if it ends in a P-saturated derivation tree.
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Satisfiability Proof Systems

A satisfiability proof system is an abstract proof system with the property that its
set of proof states includes two distinguished elements, sat and unsat.

• Rules which contain unsat as their sole conclusion are called refuting rules

• Rules which contain sat as their sole conclusion are called satisfying rules

• A refutation tree (from S) is a derivation tree (from S), all of whose leaves are
unsat

• A satisfied tree (from S) is a derivation tree (from S), at least one of whose
leaves is sat

• A P-refutation (from S) is a P-derivation (from S) ending with a refutation tree

• A satisfying P-derivation is one ending with a satisfied tree.
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A Satisfiability Proof System for Propositional Logic

How can we extend PPL to be a satisfiability proof system?

Simply add sat and unsat to PS
PL

Let’s also add a refuting rule:

Contr
p ∈ V p ∈ S ¬p ∈ S

unsat
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Derivation Tree Example

With our new rule, is this derivation tree saturated?

Split
{b → c ,¬b → c ,¬c}

MP
{b → c ,¬b → c,¬c,b}

{b → c ,¬b → c ,¬c,b, c}
MP

{b → c ,¬b → c ,¬c ,¬b}

{b → c ,¬b → c,¬c,¬b, c}
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Derivation Tree Example

With our new rule, is this derivation tree saturated?

Split
{b → c ,¬b → c ,¬c}

MP
{b → c ,¬b → c ,¬c,b}

Contr
{b → c ,¬b → c ,¬c ,b, c}

unsat

MP
{b → c ,¬b → c ,¬c ,¬b}

{b → c ,¬b → c,¬c ,¬b, c}
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Derivation Tree Example

With our new rule, is this derivation tree saturated?

Split
{b → c ,¬b → c,¬c}

MP
{b → c ,¬b → c ,¬c,b}

Contr
{b → c ,¬b → c ,¬c ,b, c}

unsat

MP
{b → c ,¬b → c ,¬c ,¬b}

Contr
{b → c,¬b → c ,¬c ,¬b, c}

unsat
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Soundness

Let P = ⟨PS ,PR⟩ be a satisfiability proof system

• A satisfiability predicate is a subset PSat ⊆ PS such that sat ∈ PSat and
unsat /∈ PSat

• PSat is also called the set of satisfiable proof states

• P is refutation sound with respect to PSat if whenever there exists a P-refutation
from S, we have S /∈ PSat

• P is solution sound with respect to PSat if whenever there exists a satisfying
P-derivation from S, we have S ∈ PSat

• P is sound with respect to PSat if it is both refutation sound and solution sound
with respect to PSat
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Soundness

Let P = ⟨PS ,PR⟩ be a satisfiability proof system and PSat a satisfiability predicate

• A proof rule p ∈ PR is satisfiability preserving if, whenever p(S) = {S1, . . .Sn},
we have S ∈ PSat iff for some i ∈ [1,n], Si ∈ PSat

Theorem
P is sound if each of its proof rules is satisfiability preserving

The proof is by induction on the size of derivations (see handout for details)
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Soundness Example

Consider again PPL = ⟨PS
PL,P

P
PL⟩

Let PSat
PL = {S ∈ P

S
PL ∣ S ∈ P(W) and S is propositionally satisfiable } ∪ {sat}

Are these rules satisfiability preserving?

MP
p,q ∈ L p ∈ S p → q ∈ S q /∈ S

S ∪ {q} Contr
p ∈ V p ∈ S ¬p ∈ S

unsat

Split
p ∈ V p occurs in some formula in S p /∈ S ¬p /∈ S

S ∪ {p} S ∪ {¬p}
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Soundness Example

Is PPL sound with respect to PSat
PL ?

Yes!

Is this rule satisfiability preserving?

Add-Var
p ∈ V p /∈ S ¬p /∈ S

S ∪ {p}
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Completeness and Termination

Let P be a satisfiability proof system

• P is complete if for every S ∈ PS , there exists either a satisfying P-derivation or a
refutation from S.

• P is terminating if every P-derivation is finite
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Completeness and Termination

MP
p,q ∈ L p ∈ S p → q ∈ S q /∈ S

S ∪ {q} Contr
p ∈ V p ∈ S ¬p ∈ S

unsat

Split
p ∈ V p occurs in some formula in S p /∈ S ¬p /∈ S

S ∪ {p} S ∪ {¬p}

Is PPL terminating?

Yes!

How would you prove it?
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Completeness and Termination

MP
p,q ∈ L p ∈ S p → q ∈ S q /∈ S

S ∪ {q} Contr
p ∈ V p ∈ S ¬p ∈ S

unsat

Split
p ∈ V p occurs in some formula in S p /∈ S ¬p /∈ S

S ∪ {p} S ∪ {¬p}

Is PPL complete?

No!

Can you find a state that is not reducible?

How about {b}?
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Proof Systems and Decision Procedures

If P is sound with respect to PSat , complete, and terminating, it induces a decision
procedure for deciding whether S ∈ PSat

• Simply start with S and produce any derivation

• It must eventually terminate

• If the final tree is a refutation tree, then S /∈ PSat

• otherwise, S ∈ PSat
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A Decision Procedure for Propositional Logic

Recall that a variable assignment v is a mapping from V to {0,1}, and v ⊧ S means
that each formula in S evaluates to true under the variable assignment v

Let S be a set of propositional formulas. The variable assignment v induced by S is
defined as follows:

v(p) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if p ∈ S
0 if ¬p ∈ S
0 otherwise

S fully defines v if v is the variable assignment induced by S and for each
propositional variable p occurring in S, either p ∈ S or ¬p ∈ S.
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A Decision Procedure for Propositional Logic

Let PEnum = ⟨PS
Enum,P

P
Enum⟩, where (as with PPL) PS

Enum contains all sets of
propositional formulas plus the distinguished states sat and unsat

There are three proof rules:

Split
p ∈ V p occurs in some formula in S p /∈ S ¬p /∈ S

S ∪ {p} S ∪ {¬p}

Sat
S fully defines v v ⊧ S

sat
Unsat

S fully defines v v ⊧ ¬ϕ for some ϕ ∈ S
unsat
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A Decision Procedure for Propositional Logic

Theorem
Each rule in PEnum is satisfiability preserving with respect to PSat

PL

Corollary

PEnum is sound with respect to PSat
PL

Theorem
PEnum is terminating

Theorem
PEnum is complete

Therefore, PEnum can be used as a decision procedure for the SAT problem
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Example

Consider the set of propositional formulas {a,¬a ∨ b, a → ¬b}

{a,¬a ∨ b, a → ¬b}
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Example

Consider the set of propositional formulas {a,¬a ∨ b, a → ¬b}

Split
{a,¬a ∨ b, a → ¬b}

{a,¬a ∨ b, a → ¬b,b} {a,¬a ∨ b, a → ¬b,¬b}
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Example

Consider the set of propositional formulas {a,¬a ∨ b, a → ¬b}

Split
{a,¬a ∨ b, a → ¬b}

Unsat
{a,¬a ∨ b, a → ¬b,b}

unsat

{a,¬a ∨ b, a → ¬b,¬b}
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Example

Consider the set of propositional formulas {a,¬a ∨ b, a → ¬b}

Split
{a,¬a ∨ b, a → ¬b}

Unsat
{a,¬a ∨ b, a → ¬b,b}

unsat
Unsat

{a,¬a ∨ b, a → ¬b,¬b}

unsat
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Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a → ¬b}

{a,¬a ∨ ¬b, a → ¬b}
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Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a → ¬b}

Split
{a,¬a ∨ ¬b, a → ¬b}

{a,¬a ∨ ¬b, a → ¬b,b} {a,¬a ∨ ¬b, a → ¬b,¬b}
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Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a → ¬b}

Split
{a,¬a ∨ ¬b, a → ¬b}

Unsat
{a,¬a ∨ ¬b, a → ¬b,b}

unsat

{a,¬a ∨ ¬b, a → ¬b,¬b}
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Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a → ¬b}

Split
{a,¬a ∨ ¬b, a → ¬b}

Unsat
{a,¬a ∨ ¬b, a → ¬b,b}

unsat
Sat

{a,¬a ∨ ¬b, a → ¬b,¬b}

sat
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Strategies

Sometimes, a proof system does not have nice properties unless the rules are applied in
a specific way

Let P = ⟨PS ,PR⟩ be a proof system

• A P-strategy is a partial function that, when defined, takes a derivation tree τ
and returns a new derivation tree τ ′ such that (τ, τ ′) is a P-derivation

• A P-derivation D follows a P-strategy π if each derivation tree (after the first) in
D is the result of applying π to the previous derivation tree, and, if D is finite, the
final derivation tree is not in the domain of π
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Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name with
variables smaller than their negations

Consider the following PPL-strategy πPL:

1. Find the first reducible leaf (in a left-to-right depth-first traversal); if none, then
πPL is undefined

2. Apply MP if possible, using the smallest possible literals (according to ≺), first for
p, then for q

3. Otherwise, if possible, apply Split, instantiating p as small as possible

4. Otherwise, apply Contr
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

{a → ¬b,¬b → ¬a}
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

Split
{a → ¬b,¬b → ¬a}

{a → ¬b,¬b → ¬a, a} {a → ¬b,¬b → ¬a,¬a}
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

Split
{a → ¬b,¬b → ¬a}

MP
{a → ¬b,¬b → ¬a, a}
{a → ¬b,¬b → ¬a, a,¬b}

{a → ¬b,¬b → ¬a,¬a}
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

Split
{a → ¬b,¬b → ¬a}

MP
{a → ¬b,¬b → ¬a, a}

MP
{a → ¬b,¬b → ¬a, a,¬b}
{a → ¬b,¬b → ¬a, a,¬b,¬a}

{a → ¬b,¬b → ¬a,¬a}
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

Split
{a → ¬b,¬b → ¬a}

MP
{a → ¬b,¬b → ¬a, a}

MP
{a → ¬b,¬b → ¬a, a,¬b}

Contr
{a → ¬b,¬b → ¬a, a,¬b,¬a}

unsat

{a → ¬b,¬b → ¬a,¬a}
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Strategy Example

Let’s apply πPL to {a → ¬b,¬b → ¬a}:

Split
{a → ¬b,¬b → ¬a}

MP
{a → ¬b,¬b → ¬a, a}

MP
{a → ¬b,¬b → ¬a, a,¬b}

Contr
{a → ¬b,¬b → ¬a, a,¬b,¬a}

unsat

Split
{a → ¬b,¬b → ¬a,¬a}

{a → ¬b,¬b → ¬a,¬a,b} {a → ¬b,¬b → ¬a,¬a,¬b}
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Properties of Strategies

Let PSat be a satisfiability predicate for P.

• A P-strategy π is refutation sound with respect to PSat if whenever there exists
a P-refutation from S following π, we have S ∈ PSat

• A P-strategy π is solution sound with respect to PSat if whenever there exists a
satisfying P-derivation from S following π, we have S ∈ PSat(S)

• A P-strategy is sound with respect to PSat if it is both refutation sound and
solution sound with respect to PSat

• A P-strategy π is terminating if every P-derivation following π is finite

• A P-strategy π is progressive if π is defined for every derivation tree that is not a
refutation tree or a satisfied tree.
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Properties of Strategies

Let PSat be a satisfiability predicate for P.

If P is sound with respect to PSat , then every P-strategy is also sound with respect to
PSat

If P is terminating, then every P-strategy is also terminating

Theorem
P is complete iff there exists a progressive and terminating strategy for it
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