
CS257: Introduction to Automated Reasoning
DPLL(T): Combining T-Solvers with SAT



Theory of Uninterpreted Functions: TEUF
Given a signature Σ with equalities, the most unrestricted theory would include the class of all
Σ-models.

This family of theories parameterized by the signature, is known as the theory of Equality
with Uninterpreted Functions (EUF) or the empty theory, since it imposes no restrictions
on its models.

QF UF (conjunctions of TEUF -literals) can be decided with congruence closure procedure.

Example: (f (a) = a) ∧ (g(a) ≠ f (a))

Note: For simplicity, assume we only consider equality over 1 sort.

November 6, 2023 CS257 1 / 35



Congruence Closure: Definitions

Consider a set S and a binary relation R.

R is an equivalence relation iff it is reflexive, symmetric, and transitive.

An equivalence relation R is a congruence relation iff for every n-ary function f ,
∀x1, . . . xn.∀y1, . . . , yn.((⋀

n
i=1 R(xi , yi)) → R(f (x1, . . . , xn), f (y1, . . . , yn))).

Is = an congruence relation?

November 6, 2023 CS257 2 / 35



Congruence Closure: Definitions

Given a relation R, its equivalence closure RE is the smallest relation that

• contains R;

• is a equivalent relation.

Given a relation R, its congruence closure RC is the smallest relation that

• contains R;

• is a congruence relation.

November 6, 2023 CS257 3 / 35



Congruence Closure: Algorithm

Given a Σ-formula α, define its subterm set Sα as the set that contains precisely the
subterms of α that do not contain equality symbols.

Example: α ∶= f (f (a)) = a ∧ f (f (f (a))) = a ∧ g(a) ≠ g(f (a))

Sα ∶= {a, f (a), f (f (a)), f (f (f (a))),g(a),g(f (a))}

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D

2. Construct the congruence closure of E over Sα

3. Unsatisfiable iff there exists t1 ≠ t2 ∈ D and (t1, t2) ∈ E
C

November 6, 2023 CS257 4 / 35



Congruence Closure: Algorithm

α ∶= f (f (a)) = a ∧ f (f (f (a))) = a ∧ g(a) ≠ g(f (a))

Sα ∶= {a, f (a), f (f (a)), f (f (f (a))),g(a),g(f (a))}

Step 1: place each subterm of α into its own congruence class:

{a}, {f (a)}, {f (f (a))}, {f (f (f (a)))}, {g(a)}, {g(f (a))}

November 6, 2023 CS257 5 / 35



Congruence Closure: Algorithm

Step 2: For each positive literal t1 = t2 in α
• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α ∶= f (f (a)) = a ∧ f (f (f (a))) = a ∧ g(a) ≠ g(f (a))

{a, f (a), f (f (a)), f (f (f (a)))}, {g(a),g(f (a))}

November 6, 2023 CS257 6 / 35



Congruence Closure: Algorithm

α ∶= f (f (a)) = a ∧ f (f (f (a))) = a ∧ g(a) ≠ g(f (a))

{a, f (a), f (f (a)), f (f (f (a)))}, {g(a),g(f (a))}

Step 3: α is TEUF -unsatisfiable, iff α has a negative literal t1 ≠ t2, where t1 and t2 are
in the same congruence class.

Note: This Algorithm can be implemented efficiently with a union-find data structure (CC.
Chap. 9.1-9.3).

November 6, 2023 CS257 7 / 35



Congruence Closure: still an active research problem

Downey, et al. “Variations on the common subexpressions problem”, 1980.

Nieuwenhuis and Oliveras, “Proof-Producing Congruence Closure”, 2005.

Willsey, et al. “egg: Fast and extensible equality saturation”, 2021.

November 6, 2023 CS257 8 / 35



What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF -literals.

What about
g(a) = c ∧ (f (g(a)) ≠ f (c) ∨ g(a) = d) ∧ c ≠ d

Theorem: The T -satisfiability of quantifier-free formulas is decidable iff the T -satisfiability of
conjunctions/sets of literals is decidable.

Convert the formula to DNF and check if any of its disjuncts is T -satisfiable. Very inefficient!

A better solution: exploit propositional satisfiability technology

November 6, 2023 CS257 9 / 35



Lifting SAT Technology to SMT

Two main approaches:

1. “Eager”
• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

2. “Lazy”
• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

• Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

November 6, 2023 CS257 10 / 35



Lazy Approach for SMT

Given a quantifier-free Σ-formula ϕ, for each atomic formula α in ϕ, we associate a
unique propositional variable e(α).

The Boolean skeleton of a formula ϕ is a propositional logic formula, where each
atomic formula α in ϕ is replaced with e(α).

Example:
ϕ ∶= (x < 0 ∨ (x + y < 1 ∧ ¬(x < 0))) → y < 0

Let e(x < 0) = p1, e(x + y < 1) = p2, e(y < 0) = p3

What is the Boolean skeleton of ϕ?

November 6, 2023 CS257 11 / 35



(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f (g(a)) ≠ f (c) ∨ g(a) = d ∧ c ≠ d

Simplest setting:
• Off-line SAT solver

• Non-incremental theory solver for conjunctions of equalities and disequalities

• Theory atoms (e.g., g(a) = c) abstracted to propositional atoms (e.g., 1)

November 6, 2023 CS257 12 / 35



(Very) Lazy Approach for SMT – Example

g(a) = c
-´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

1

∧ f (g(a)) ≠ f (c)
-´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬2

∨ g(a) = d
-´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

3

∧ c ≠ d
-´¸¶
¬4

• Send {1, ¬2 ∨ 3, ¬4} to SAT solver.

• SAT solver returns model {1, ¬2, ¬4}.
Theory solver finds (concretization of) {1, ¬2, ¬4} unsat.

• Send {1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, ¬4}.
Theory solver finds {1, 3, ¬4} unsat.

• Send {1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2, ¬1 ∨ ¬3 ∨ 4} to SAT solver.

• SAT solver finds {1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4, ¬1 ∨ ¬3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in TEUF .

November 6, 2023 CS257 13 / 35



Eager Approach for SMT – Example

f (b) = a ∨ f (a) ≠ a

Step 1: eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f (x);

• for each pair of introduced variables fx , fy , add the formula x = y → fx = fy .

f (b) ⇒ fb f (a) ⇒ fa

(fb = a ∨ fa ≠ a) ∧ (a = b → fa = fb)

Now, atomic formulas are equalities between constants/variables

November 6, 2023 CS257 14 / 35



Eager Approach for SMT – Example

Rename fb as c and fa as d :

(fb = a ∨ fa ≠ a) ∧ (a = b → fa = fb)

becomes
(c = a ∨ d ≠ a) ∧ (a = b → d = c)

Step 2: eliminate all equalities.

• replace each pair of constants x , y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity

(pc,a ∨ ¬pd,a) ∧ (pa,b → pd,c)
∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d

∧ (pa,b ↔ pb,a) ∧ (pa,c ↔ pc,a) ∧ (pa,d ↔ pd,a) . . .
∧ ((pa,b ∧ pb,c) → pa,c) ∧ ((pa,c ∧ pc,d) → pa,d) . . .

The resulting propositional formula is equi-satisfiable with the original TEUF -formula.

Note: not all the transitivity cases are needed.
November 6, 2023 CS257 15 / 35



Discussion

“Eager”

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

“Lazy”

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the eager approach and the lazy approach?

Submit your answers to

https://pollev.com/andreww095

November 6, 2023 CS257 16 / 35

https://pollev.com/andreww095


Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model Check T -satisfiability only
of full propositional model

• Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause If M is T -unsatisfiable, add ¬M as a
clause

• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and add ¬M0 as
a clause

• If M is T -unsatisfiable, add clause and restart If M is T -unsatisfiable, add clause
and restart

• If M is T -unsatisfiable, backtrack to some point where the assignment was still
T -satisfiable

November 6, 2023 CS257 17 / 35



Lazy Approach – Main Benefits

• Every tool does what it is good at:

- SAT solver takes care of Boolean information

- Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

- SAT and theory solvers communicate via a simple API

- SMT for a new theory only requires new theory solver

- An off-the-shelf SAT solver can be embedded in a lazy SMT system with a few new
lines of code

November 6, 2023 CS257 18 / 35



An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled with an abstract calculus.

November 6, 2023 CS257 19 / 35



Review: CDCL

States: Fail or ⟨M,∆,C ⟩

Initial state:

• ⟨(),∆0,no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• Fail if ∆0 is unsatisfiable

• ⟨M,G ,no⟩ otherwise, where

- G is equivalent to ∆0 and
- M satisfies G

November 6, 2023 CS257 20 / 35



Review: CDCL Rules

l ∈ Lits(∆) l ,¬l ∉M
(Decide)

M ∶=M ● l

C ≠ no ● ∉M
(Fail)

Fail

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

(Restart)
M ∶=M[0] C ∶= no

Conflict, Explain

C = {l1,⋯, ln, l} lev(¬l1), . . . ,lev(¬ln) ≤ i < lev(¬l)
(Backjump)

C ∶= no M ∶=M[i]l

∆ ⊧ C C ∉∆
(Learn)

∆ ∶=∆ ∪ {C}

C = no ∆ =∆′ ∪ {C} ∆′ ⊧ C
(Forget)

∆ ∶=∆′

We are going to extend this abstract framework to lazy SMT

November 6, 2023 CS257 21 / 35



From SAT to SMT

Same states and transitions but

• ∆ contains quantifier-free clauses in some theory T

• CDCL Rules operates on the Boolean skeleton of ∆ (assume a mapping from
theory literal to propositional literal

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and
decision points

• the CDCL system is augmented with rules

T -Conflict, T -Propagate

November 6, 2023 CS257 22 / 35



SMT-level Rules

Fix a theory T

At SAT level:

C = no {l1,⋯ln} ∈∆ ¬l1, . . . ,¬ln ∈M
(Conflict)

C ∶= {l1,⋯, ln}

At SMT level:

C = no l1 ∧ . . . ∧ ln ⊧T � l1, . . . , ln ∈M

C ∶= {¬l1,⋯,¬ln}
(T -Conflict)

If the conjunction of a set of literals in the trail are unsatisfiable modulo T , the
negation of the set of literals consistutes a conflict clause.

November 6, 2023 CS257 23 / 35



SMT-level Rules

At SAT level:

{l1,⋯, ln, l} ∈∆ ¬l1,⋯,¬ln ∈M l ,¬l ∉M
(Propagate)

M ∶=M l

At SMT level:

l ∈ Lits(∆) M ⊧T l l ,¬l ∉M

M ∶=M l
(T -Propagate)

If the current partial assignment logically entails some literal l in T , extend the trail
with l .

November 6, 2023 CS257 24 / 35



SMT-level Rules

At SAT level:

C = {l} ∪D {l1,⋯, ln,¬l} ∈∆ ¬l1, . . .¬ln,¬l ∈M ¬l1, . . . ,¬ln ≺M ¬l
(Explain)

C ∶= {l1,⋯, ln} ∪D

At SMT level:

C = {l} ∪D ¬l1 ∧ . . . ∧ ¬ln ⊧T ¬l ¬l1, . . . ,¬ln ≺M ¬l

C ∶= {l1,⋯, ln} ∪D
(T -Explain)

There is a literal l in the conflict clause, and ¬l is logically entailed by some literals
assigned before it. We can derive a new conflict clause by performing a resolution.

November 6, 2023 CS257 25 / 35



Modeling the Very Lazy Theory Approach

T -Conflict is enough to model the naive integration of SAT solvers and theory solvers
seen in the earlier EUF example

g(a) = c
-´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

1

∧ f (g(a)) ≠ f (c)
-´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬2

∨ g(a) = d
-´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

3

∧ c ≠ d
-´¸¶
¬4

M ∆ C rule
1, ¬2 ∨ 3, ¬4 no

1 ¬4 1, ¬2 ∨ 3, ¬4 no by Propagate+

1 ¬4 ● ¬2 1, ¬2 ∨ 3, ¬4 no by Decide
1 ¬4 ● ¬2 1, ¬2 ∨ 3, ¬4 ¬1 ∨ 2 ∨ 4 by T -Conflict
1 ¬4 ● ¬2 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 ¬1 ∨ 2 ∨ 4 by Learn

1 ¬4 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 no by Restart
1 ¬4 2 3 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 no by Propagate+

1 ¬4 2 3 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4, ¬1 ∨ ¬3 ∨ 4 ¬1 ∨ ¬3 ∨ 4 by T -Conflict,Learn
Fail by Fail

November 6, 2023 CS257 26 / 35



A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can:

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

November 6, 2023 CS257 27 / 35



A Better Lazy Approach

g(a) = c
-´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

1

∧ f (g(a)) ≠ f (c)
-´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬2

∨ g(a) = d
-´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

3

∧ c ≠ d
-´¸¶
¬4

M ∆ C rule
1, ¬2 ∨ 3, ¬4 no

1 ¬4 1, ¬2 ∨ 3, ¬4 no by Propagate+

1 ¬4 ● ¬2 1, ¬2 ∨ 3, ¬4 no by Decide
1 ¬4 ● ¬2 1, ¬2 ∨ 3, ¬4 ¬1 ∨ 2 by T -Conflict

1 ¬4 2 1, ¬2 ∨ 3, ¬4 no by Backjump
1 ¬4 2 3 1, ¬2 ∨ 3, ¬4 no by Propagate
1 ¬4 2 3 1, ¬2 ∨ 3, ¬4 ¬1 ∨ ¬3 ∨ 4 by T -Conflict

Fail by Fail

November 6, 2023 CS257 28 / 35



Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the rules using the
following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

November 6, 2023 CS257 29 / 35



Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just to validate the
choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the engine’s search

l ∈ Lits(∆) M ⊧T l l ,¬l ∉M

M ∶=M l
(T -Propagate)

C = {l} ∪D ¬l1 ∧ . . . ∧ ¬ln ⊧T ¬l ¬l1, . . . ,¬ln ≺M ¬l

C ∶= {l1,⋯, ln} ∪D
(T -Explain)

November 6, 2023 CS257 30 / 35



Theory Propagation Example

g(a) = c
-´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

1

∧ f (g(a)) ≠ f (c)
-´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬2

∨ g(a) = d
-´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

3

∧ c ≠ d
-´¸¶
¬4

M ∆ C rule
1, ¬2 ∨ 3, ¬4 no

1 ¬4 1, ¬2 ∨ 3, ¬4 no by Propagate+

1 ¬4 2 1, ¬2 ∨ 3, ¬4 no by T -Propagate (1 ⊧T 2)
1 ¬4 2 ¬3 1, ¬2 ∨ 3, ¬4 no by T -Propagate (1, ¬4 ⊧T ¬3)
1 ¬4 2 ¬3 1, ¬2 ∨ 3, ¬4 ¬2 ∨ 3 by Conflict

Fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

November 6, 2023 CS257 31 / 35



Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the transition system
with rules:

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories
def
= (1) + (2)

DPLL Modulo Theories
def
= (1) + (2) + (3)

November 6, 2023 CS257 32 / 35



Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL modulo Theories rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition: (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Lemma: Every exhausted execution ends with either C = no or Fail.

Proposition (Soundness) For every exhausted execution starting with ∆ =∆0 and
ending with Fail, the clause set ∆0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting with ∆ =∆0 and
ending with C = no, ∆0 is T -satisfiable; specifically, M is T -satisfiable and M ⊧p ∆0.

November 6, 2023 CS257 33 / 35



DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple architecture named
DPLL(T )

DPLL(T ) = DPLL(X ) engine + T -solver

DPLL(X ):
• Very similar to a SAT solver, enumerates Boolean models
• Not allowed: pure literal
• Required: incremental addition of clauses
• Desirable: partial model detection

T -solver:
• Checks the T -satisfiability of conjunctions of literals
• Computes theory propagations
• Produces explanations of T -unsatisfiability/propagation
• Must be incremental and backtrackable

November 6, 2023 CS257 34 / 35



SMT Solvers

November 6, 2023 CS257 35 / 35

SAT Solver
• Only sees Boolean
skeleton of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions

Core
• Sends each assertion to the
appropriate theory

• Sends deduced literals to
other theories/SAT solver

• Handles theory
combination

Theory Solvers

• Decide T -satisfiability of a
conjunction of theory literals

• Incremental

• Backtrackable

• Conflict Generation

• Theory Propagation


